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The biomolecules in and around a living cell – proteins, nucleic acids, lipids and carbohydrates – continuously sample
myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given
biomolecule also samples (and is sampled by) a rapidly fluctuating local environment comprising other biopolymers, small
molecules, water, ions, etc. that diffuse to within a few nanometres, leading to inter-molecular contacts that stitch together
large supramolecular assemblies. Indeed, all biological systems can be viewed as dynamic networks of molecular
interactions. As a complement to experimentation, molecular simulation offers a uniquely powerful approach to analyse
biomolecular structure, mechanism and dynamics; this is possible because the molecular contacts that define a complicated
biomolecular system are governed by the same physical principles (forces and energetics) that characterise individual small
molecules, and these simpler systems are relatively well-understood. With modern algorithms and computing capabilities,
simulations are now an indispensable tool for examining biomolecular assemblies in atomic detail, from the conformational
motion in an individual protein to the diffusional dynamics and inter-molecular collisions in the early stages of formation of
cellular-scale assemblies such as the ribosome. This text introduces the physicochemical foundations of molecular
simulations and docking, largely from the perspective of biomolecular interactions.
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1. Introduction

Molecular biology is highly dynamical in nature, contrary

to what may be implied by the static illustrations of

proteins, nucleic acids and other biomolecular structures

printed in textbooks. Life occurs above absolute zero, and

the biomolecular components in and around a cell –

proteins, nucleic acids, lipids and carbohydrates – are

continuously sampling, via intra-molecular interactions,

the myriad conformational states that are thermally

accessible at physiological temperatures. Simultaneously,

a given biomolecule also samples (and is sampled by) a

rapidly fluctuating local environment comprising other

biopolymers, small molecules, water, ions, etc. that diffuse

to within a few nanometres, leading to inter-molecular

interactions and the formation of supramolecular assem-

blies.[1–6] These intra- and inter-molecular contacts are

governed by the same physical principles (forces and

energetics) that characterise individual molecules and

inter-atomic interactions, thereby enabling a unified

picture of the physical basis of molecular interactions

from a small set of fundamental principles.[7–12] From

just a few physical laws, and several plausible assump-

tions, describing covalent and non-covalent (non-bonded

Box 1) interactions and their relative magnitudes, much

can be learnt about molecular interactions and dynamics as

the means by which proteins fold into thermodynamically

stable ‘native’ structures,[13–15] bind other proteins or

small molecules to trigger various cellular responses,[16]

act as allosteric enzymes,[17–20] participate in metabolic

pathways and regulatory circuits,[21,22] and so on – in

short, all of cellular biochemistry.

Computational approaches are well-suited to studies

of molecular interactions, from the intra-molecular

conformational sampling of individual proteins (such as

membrane receptors [23] or ion channels [24]) to the

diffusional dynamics and inter-molecular collisions that

occur in the early stages of formation of cellular-scale

assemblies (such as a neuronal dendritic spine.[25,26])

To study such phenomena, two major lineages of

computational approaches have developed in molecular

biology: physics-based methods (often referred to as

simulations) and informatics-based approaches (often

termed the data-mining or machine learning approach to

knowledge extraction via statistical inference). An

advantage of the former approach is its physical

realism,[11] while an advantage of the latter approach

is its potential to illuminate phylogenetic relationships

and evolutionary features.[27,28] This primer focuses

on the simulation of biopolymers and molecular

interactions as physical processes; introductory texts

on bioinformatic approaches are available (e.g. Jones

and Pevzner [29]).
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2. Motivation for computational approaches

2.1 Molecular interactions in context: biomolecular

structure, function and dynamics

Life is necessarily dynamic, and it is well-established that

the three-dimensional (3D) structure and dynamics of a

biopolymer link its sequence to its function: a specific

sequence of amino acids spontaneously folds into a

particular 3D shape which, together with the dynamical

properties of that structure, give rise to the evolutionarily

conserved biochemical functions associated with the

protein sequence.[5] However, it is becoming increasingly

clear that biomolecular function is also defined contex-

tually, in terms of the ligands and other biopolymers with

which a biomolecule characteristically interacts (Figure 1

(A)). Consider a biopolymer such as a 150-amino acid,

two-domain protein, denoted ‘P’ (e.g. the kinase in

Figure 1(C)). Imagine tracking, with high temporal (<ns)

and spatial (<nm) resolution, a particular copy of P in a

given cell (call it P1). The physiological activities of P1

stem from its 3D structure and intrinsic flexibility

(conformational dynamics within and between its two

domains), together with (i) the influence of extrinsic

factors such as P1’s chemical environment (redox

potential, pH, ionic strength, etc.) and (ii) the set of

molecular interactions in which P1 engages at any single

instant with copies of itself and other biopolymers (Q,

R, . . . ), ligands, etc. This set of molecular contacts

P1· · ·{Q, R, . . . } can rapidly change, even on the timescale

of the dozens of nanoseconds that elapse while P1 diffuses

<20 Å at room temperature. Yet even this simple picture

has already incorporated flawed assumptions: It is now

appreciated that the cytoplasm of a cell is a viscous

medium that is densely crowded with biopolymers and

other solutes with which molecular interactions occur

(Figure 1(A)),[3,30–32] making it inaccurate to model

diffusion in such an environment as that in pure water.[33]

Regardless of such current limits on our understanding,

this crowded and inherently dynamic environment of the

cellular interior is one reason why molecular interactions

and dynamics pervade biology: biopolymers fold into

native 3D conformations; monomers self-assemble into

higher-order structural units that often are the functional

entities (e.g. an oligomeric enzyme with a composite

active site at a subunit interface [34,35]); ions traverse the

pores of membrane channels [24,36,37]; motor proteins

and other factors diffuse along one-dimensional tracks

(DNA, cytoskeletal filaments, etc. [38,39]) and so on. All

of these dynamical processes involve the formation and

dissociation of molecular contacts that vary greatly in

type, number and duration.

2.2 Simulation as a complement to experimentation

Experimentation, computation and theory are highly

complementary. Experimental data are real, but unam-

biguous results demand a flawless set of control

experiments, and even then the results are generally not

readily (directly) interpretable at an atomic or molecular

level; understanding and knowledge emerge gradually, via

efforts to interpret experimental data in terms of an

underlying theoretical model (e.g. fitting ligand-binding

data to chemical equilibria equations and isotherms [40]).

With molecular simulations and other forms of compu-

tation, virtually any imaginable approach can be devised,

implemented, and then applied in order to gain insight for

nearly any biomolecular system, at potentially ultra-high

resolution in terms of length-scales (atomic) and time-

scales (sub-ps). However, the degree of correctness and

realism is not always clear due to the assumptions, limited

sampling, etc. that make the calculations feasible in the

Box 1. Notational conventions, abbreviations and symbols

. Words or phrases are italicised either for emphasis or when introduced as new terminology; vectors are indicated

either in bold italics (e.g. r for the position vector) or by an arrow above the letter (e.g. ~r).
. Abbreviations, acronyms, symbols: BD, Brownian dynamics; DoF, degree of freedom; FF, force-field; FFT, fast

Fourier transform; LD, Langevin dynamics;MC,MonteCarlo;MD,molecular dynamics;MM,molecularmechanics;

NMA, normal mode analysis; PBC, periodic boundary conditions; PCA, principal component analysis; p.d.f.,

probability density function; PME, particle-mesh Ewald; PMF, potential of mean force; QM, quantum mechanics;

RMSD/F, root-mean-square deviation/fluctuation; a single centre dot ‘z’ indicates an intermolecular complex and a

triple ‘· · ·’ denotes specific interatomic interactions
. The following symbols denote physical constants or frequently appearing quantities: Etot, total system energy; U,

potential energy (also written Epot and known as the internal energy of a molecule); K or Ekin, kinetic energy;

T , absolute temperature (Kelvin); S, entropy; H, enthalpy (or Hamiltonian,H, depending on context); A, Helmholtz

free energy; G, Gibbs free energy; Z, partition function; m, mass; NA, Avogadro constant (<6.02 £ 1023 entities/

mole); kB, Boltzmann constant (<1.38 £ 10223 J/K)
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first place (precision is more readily assessed than

accuracy, especially with computational results).[41–44]

There is no substitute for experimental data, and

computational results may be best viewed as more

predictive and interpretative than conclusive; together,

computation and experimentation can aid the testing and

development of coherent theories for the mechanism of a

biomolecular phenomenon.

Simulation approaches are especially well-suited to

studies of biomolecular structure and dynamics, for reasons

that range from conceptual to practical. Conceptually, many

computational methods have developed out of the same

physical theories (usually statistical mechanics) used to

describe biopolymer structure and thermodynamics,[11,45]

making computational approaches thenatural bridgebetween

experimental data and the models (theories) used to interpret

such data.[46–48] In practical terms, two distinct types of

issues arise. The first issue is true for all bio-systems: some

experimental methods are inherently limited for certain types

of questions for any biomolecular system. The second issue is

true of all experimentalmethods: some biomolecular systems

are experimentally less tractable than others, with the nature

of the experimental limitation depending on the precise

question. As an example, consider the problem of extracting

information about the dynamics of a proteinzligand complex

at both atomic resolution and over the potentially relevant ns

$ ms timescales (Figure 2). Crystallography is not readily

applied to this problem because a proteinzligand crystal

structure is a spatially and temporally averaged model, the

averages being taken over more than 1012 unit cells (a

conservative estimate, for mm-sized crystals of typical cell

dimensions) and time spans greater than hundreds of

milliseconds (a conservative estimate, for exposure with

high-brilliance synchrotron X-rays). The development of

time-resolved diffraction approaches [49,50] is an active area

of research that can benefit from simulation approaches [51]

as well as new experimental capabilities.[52] Solution-state

NMR relaxation measurements offer another experimental

methodology to study dynamics, but this approach can be

hampered by fundamental timescale issues and by the need to

fit data to a priori assumptions about motional modes (see,

e.g. [53,54] for discussions).

A basic problem for the diffraction and spectroscopic

approaches is that, as structural biology has advanced,

many of the systems of contemporary interest are large,

dynamic assemblies that may be only transiently stable

(e.g. membrane protein complexes,[55] the RNA-proces-

sing spliceosome [56]). High-resolution crystallographic

or NMR studies of such systems are hindered by precisely

those features that may be of greatest biological interest —

conformational heterogeneity in the population on the

timescale of the experiment, dynamical inter-conversions

Figure 1. (Colour online) Molecular interactions over many length-scales. Structural biology and molecular simulations have reached
the point that atomically-detailed models can now be built for the bacterial cytoplasm, and dynamics in this crowded medium can be
studied. A snapshot from such a simulation is shown in (A); as implied by this image (from [3]), a cell can be defined by its set of
molecular interactions. Flexibility in the number (few, dozens and hundreds) and types (polar, hydrophobic, etc.) of contacts yields
immense variability in the resulting complexes. For instance, panel (B) shows part of the structure of the bacterial ribosome (protein blue,
RNA yellow) bound to the antibiotic chloramphenicol (vdW spheres near centre). This cellular-scale assembly is a vast network of
protein· · ·RNA (pink lines), protein· · ·small-molecule (green lines) and protein· · ·protein (not shown) contacts. Of these, protein–ligand
interactions are the simpler to treat (local length-scale, fewer contacts) and are also of major pharmaceutical relevance, as enzyme
inhibitors and other drugs are often small organic compounds. As an example of such interactions, panel (C) shows the anticancer drug
imatinib bound to the tyrosine kinase ABL2 (an oncoprotein associated with several cancers). As is true of many ligand-binding sites, the
compound binds in a concave, cleft-like region on the solvent-accessible protein surface.[229] The exact location of this binding site –
between two protein domains (SH2 domain in grey, kinase domain in brown) – is related to imatinib’s inhibitory potency
(imatinib· · ·ABL2 interactions block ABL2’s phosphorylation activity). Myriad molecular interactions similar to the interactions shown
here are forming, persisting or dissociating in a cell at any given moment.
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between stable sub-states (some sub-states may be more

‘druggable’ [57,58]) and so on. Diffraction studies require

well-ordered crystals, and crystallisation requires a super-

saturated population of molecules or complexes [59];

excessive structural variability among the entities will

impede their packing into a geometrically ordered lattice (or,

even if they do, the lattice may diffract only poorly due to

severe mosaicity or other defects [60]). Similarly, in NMR

structure determination [61] the dynamical regions are

generally the least well-resolved, and approaches to extract

dynamics are beset by potential limitations; for instance, the

model-free approach to infer dynamics from spin relaxation

measurements assumes decoupling of global (e.g. protein

tumbling) and internal (e.g. domain hinge-bending) modes,

which is problematic for large-scale, high-amplitude

fluctuations such as between two protein domains.[54]

Also, electron paramagnetic resonance spectral line-shapes

can be analysed to infer ns-scale protein backbone dynamics,

[62] but this approach alone is not without caveats.

Computational approaches such as molecular dynamics

(MD) simulation offer an appealing route to exploring

molecular flexibility and interactions in full atomic detail,

particularly when the desired information is experimentally

inaccessible because of these methodological limitations.

2.3 Scope of this text

Biomolecular simulation is a vast subject. The remainder

of this primer focuses on MD simulations and in silico

docking, as these are two common computational

approaches in the modern biosciences. Also, MD

simulations have taken on renewed significance as ultra-

long (ms–ms-scale) atomistic simulations are becoming

tractable because of advances in hardware, software and

algorithms.[48,63–69] Intriguing conformational tran-

sitions on biologically relevant timescales (ms and beyond;

Figure 2) are becoming increasingly accessible using

classical MD simulations because of these developments,

in addition to a host of ‘enhanced sampling’ methods that

have been under continual development.[18,70–72] In

what follows, basic concepts (Section 3) are emphasised

rather than practical recipes, with the focus being on MD

simulations (Section 4) and docking (Section 5). The

fundamental principles — conformational sampling,

dynamics integrators, force-fields (FFs), etc. — appear at

the core of most modern computational approaches,

including MD and docking. In addition, many interrelated

families of techniques derive from the basic MD and

docking methodologies, such as coarse-graining,[73,74]

simulated annealing structure refinement,[75] structure

prediction,[14,15,76] flexible ligand docking,[77]

protein–protein docking [78–80] and so on.

3. Physical principles, computational concepts

The conceptual foundation and practical basis of MD

simulations and related approaches, such as Monte Carlo

(MC) sampling,[81,82] can be appreciated by considering

a few key principles. The idea of energy surfaces is a

unifying physical principle, and conformational sampling

of the energy landscape is often the computational goal, in

both MD and docking. These and related statistical

mechanical concepts are described in this section.

3.1 Statistical mechanics in a nutshell

3.1.1 Why is it necessary?

Statistical mechanics is the theoretical framework linking

the microscopic (atomic-level) properties of a molecule to

its thermodynamic properties on bulk/macroscopic scales

of, e.g., 1023 molecules in a vial. To see the need for such a

theory, consider an idealised system comprised of a single

Figure 2. (Colour online) Biomolecular interactions and dynamics: relevant timescales. Biomolecular structure is modulated by
dynamical processes that span several decades, ranging from ps-scale side-chain rotations to much longer (<ms) times for rigid-body
translation and rotation of higher-order structural units. Secondary structural elements, super-secondary structural elements (e.g. helix-
turn-helix motif or a b-hairpin) or entire protein domains can engage in ‘collective motions’ on even longer timescales. Though omitted
from this schematic for clarity, distinct motional modes also occur in nucleic acids, such as ns-scale re-puckering of nucleoside sugar
rings and the longer characteristic times for global twisting, stretching and bending of duplex helices. The terminology often used to
describe these dynamical regimes includes ultrafast (# fs), fast (, fs $ , ps), infrequent (, ps $ , ns) and intrinsically complicated
(,ms $ , ms) processes. As a point of reference, the dt~1-fs integration step used in most atomistic MD simulations is indicated. The
approximate year in which simulations of a given duration (ps, ns, . . . ) became at least feasible, if not routine, is shown above the timeline;
for instance, ms-scale simulations became computationally attainable (multiple such simulations began appearing) shortly after 2005.
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molecule in complete isolation at T ¼ 0K. Its bond angles,

zero-point energy, dipole moment and other microscopic

properties could be computed with reasonable accuracy

via quantum mechanics (QM), were the molecule small

enough (tens to hundreds of atoms) for the calculations to

be feasible at the desired level of QM theory.[83] A

molecule under such isolated conditions possesses only a

(QM-computable) potential energy, also known as its

internal energy, U; much of this energy may exist, for

instance, by virtue of ring-strain or steric constraints that

prevent the molecule from adopting an even lower-energy

conformation. Such a system is computationally tractable,

but of limited biochemical relevance. Of greater relevance

might be the same molecule at finite temperatures (e.g.

T ¼ 310K for humans) and on much larger scales, say

with 1023 copies of the compound floating about in vitro

during a biochemical assay. It is far less straightforward

to imagine computing the physical properties (energies,

compressibility, etc.) of this bulk system: in addition to the

sheer number (N < NA) of particles, there is a combinator-

ial explosion in the number of possible system configur-

ations that must be considered (already ,2NA if there are

only two possible states per particle!); there is now kinetic

energy to also take into account, which is the thermal

energy of a particle by virtue of it being above absolute zero

(often denoted as K); there is a continuously dynamical

exchange between potential and kinetic energies, the sum of

which is the system Hamiltonian (H ¼ U þK for a closed

system); there is now a virtual infinitude of potential

configurations of system components relative to one another

(< N2
A pairwise interactions, to say nothing of three-body

and higher-order interactions); there is coupling between

the dynamical interactions between particles (inter-

molecular dynamics) and the conformational degrees of

freedom (DoF) within individual flexible particles (intra-

molecular dynamics) and so on.

3.1.2 Why, and how, does it work?

Despite the complex picture described above, the situation is

not hopeless if we take a statistical rather than deterministic

approach, using probabilistic formulations such as the

Boltzmann distribution (Box 2) to describe populations of

particles in terms of distributions of microstates and

properties (position, velocity, etc.). We compute averages

of properties from the statistical distributions, limiting

ourselves to bulk scales beyond N . 103 particles;

population sizes less than this are too small. The central

pillar of statistical mechanics is a purely numerical property

of random variables: (i) larger populations have smaller

variances in their means (the law of large numbers) and

(ii) large populations of independent random variables tend

towards the normal distribution (the central limit theorem

[84]), with the standard deviation of the mean for a sample

(ss) drawn from a population of size N scaling as sp=
ffiffiffiffi
N

p
,

wheresp is the population standard deviation. As population

sizes approach the NA molecules in a test-tube (e.g. in a

calorimetry experiment), the probability density functions

(p.d.f.) for any observable/bulk quantity become so strongly

spiked that the mean statistical values can be taken as single,

well-defined thermodynamic quantities (entropy, free

energy, etc.), rather than distributions of values.[85,86]

This asymptotic behaviour,ss,0 asN !1, is knownas the

thermodynamic limit. Thus, while individual particles in a

system of, say, 105 particles may have drastically different

individual energies, the mean energy of the system will be

essentially a single, well-defined value known as the internal

energy, kEl ¼ U; the same is true for all bulk properties, such

as the heat capacity, entropy, etc.

To illustrate a bulk thermodynamic property in terms

of the underlying statistical distributions, consider the

entropy (S) of a system of N hard spheres. The entropy is a

function of the 6N particle positions and momenta for the

system in discrete microstates i ¼ 1; 2; 3; . . . , and is

expressible as a sum over these microstates:

S ¼ 2kB
X

i
pi ln pi: ð1Þ

In the above, known as the Gibbs entropy formula, kB is

the Boltzmann constant and pi is the probability of

occupation of microstate i. An instructive exercise is to

consider the Equation (1) summation for the extreme cases

of (i) a perfectly uniform distribution (p1 ¼ p2 ¼
· · · ¼ pn ¼ ð1=nÞ, for n states) and (ii) a singly-spiked

distribution (pi ¼ 1 for one i); note that, because an

infinitude of microstates exist as a continuum in classical

dynamics (Figure 3), discrete sums are replaced by

integrals in classical statistical mechanics. While the

entropy is a measure of the p.d.f. of microstates and is a

property of the ensemble (Box 2) of particles, it is also a

statistical quantity itself – that is, there exists a

distribution of entropy values for a system of N particles,

too, and that sampling distribution has means (kSl),
variances (s2ðSÞ) and so on. Consider how this distribution

of entropy values varies with system size, N. The entropy

for simple model systems can be computed and plotted for

ensembles of size N ¼ 1; 2; . . . ;NA particles. Extrapolat-

ing to N < NA particles, the probability distribution of the

entropy p.d.f. becomes infinitely narrow. To see this,

consider the exponential growth of the central (k < n=2)

binomial coefficients
n

k

 !
¼ n!=k!ðn2 kÞ! for n ¼

1; 2; . . . ; NA coin flip trials, and consider the essentially

zero deviation from a 1:1 heads:tails ratio for this series of

flips when n < NA. In the same way, the distributions of

entropy values become so sharply spiked that there are

only infinitesimal deviations from the means, S, with dS <
0 as N ! NA. These statistical quantities are precisely the
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usual thermodynamic properties with which one is

familiar, and which can be determined via experimental

measurements. Boltzmann showed that for the micro-

canonical ensemble (Box 2), which corresponds to a

constant number of particles (N), volume (V) and energy

(E), the system entropy is S ¼ kB lnðVðN;V ;EÞÞ, where V
is the number of accessible microstates (Figure 3(A)) and

is a function of only N; V; E. In this way – as statistical

quantities and asymptotic distributions – all the usual

thermodynamic potentials take on statistically well-

defined (i.e. meaningful) average values on bulk scales.

A biomolecular example to illustrate this general

approach would be to consider 105 random conformations

of a protein of interest. We can calculate the energy of

each of those conformations using the methods of

molecular mechanics (MM).[8] Then, given these energies

and the Boltzmann distribution, we can evaluate the

distribution of conformational states of the protein and

also determine the bulk thermodynamic properties of the

ensemble.[45] In Maxwell-Boltzmann statistics, the

probability of occurrence of state i with associated energy

1i ( , 1 .¼ U) is:

pi ¼ e21i=kBT

Z
; ð2Þ

where kB is the Boltzmann constant, T is the absolute

temperature and Z is a normalisation constant to ensure

that the probabilities sum to unity. This normalisation

factor is known as the partition function,[86] and it equals

the sum over all microstates i. That is, Z ¼Pie
21i=kBT in a

quantum mechanical formulation; in the classical limit of

infinitesimally spaced energy levels, integrals replace

discrete sums. Also, this brief introduction does not

distinguish between the foregoing molecular partition

function and the canonical partition function for an

ensemble of N particles at fixed volume and temperature

(the NVT ensemble (Box 2)); for the canonical ensemble,

the total energy of the system in state i, Ei, appears in the

argument of the exponential. Though the partition function

arises as the simple requirement of a valid probability

distribution, it is the central link between microscopic

properties and macroscopic observables. Indeed, the

Box 2. Simulation-related physical concepts and terminology

. Ensemble: A collection of N particles possessing some well-defined, bulk thermodynamic properties, such as

temperature (T), pressure (P) or mean energy (E); importantly, T , P, E and all other macroscopic quantities become

statistically well-defined, with only infinitesimal fluctuations about the mean, beyond ,105 particles. Three

ensembles commonly used in MD simulations are NVE (microcanonical), NVT (canonical), and NPT

(isothermal–isobaric), which correspond to fixed numbers of particles, volume, energy, etc., as indicated by the

symbols for each. These three ensembles correspond to maximising the system entropy, minimising the Helmholtz

free energy (A ¼ U 2 TS), or minimising the Gibbs free energy (G ¼ H 2 TS), respectively. For some types of

systems (e.g. an ion channel in a planar membrane bilayer), less common ensembles may become useful (e.g. the

constant surface tension [g ] and normal pressure [P’] ensemble, NP’gT).
. Phase space: For a dynamical system of N particles, this is the multidimensional space of all values of position (q;

3N DoF) and momenta (p; 3N DoF). Importantly, proteins and other systems of interest are well-defined collections

of particles (there is a particular pattern of covalent connectivity that defines, say, a leucine vs. an isoleucine), so

not all arbitrary values and combinations (q, p) are allowed; also, particular regions of phase space are preferentially
populated, and at equilibrium the Boltzmann distribution is the probability density function (p.d.f.) governing the

population of these accessible regions of phase space. In short, phase space can be viewed as a hyper-dimensional

inventory of all the potential microscopic states of a system together with the probability of occurrence of each; thus,

as a concept phase space encompasses all that is knowable about the microscopic dynamics of a thermodynamic

system.
. Trajectory: The list of coordinates (~ri) and velocities (~vi) for each atom i in a system, as a function of time, over the

course of a dynamics simulation. An individual structure from this time series f~riðtÞ} is often referred to as a snapshot
or frame from the trajectory.

. Ergodicity: This central axiom of statistical mechanics is that the ensemble average of some observable property (A)

of a system, denoted , A ., converges to the samevalue as the time-average of that property, denoted �A, in the limit

of infinite sampling. This is the fundamental justification for applications of MD, as it stipulates that trajectory-

averaged properties computed for a single molecule in isolation (a simulation system) equals the bulk

thermodynamic properties of the system. This is also why sufficient sampling is crucial in MD, where ‘sufficient’

means to the point of convergence of bulk properties.
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partition function is a thermodynamic quantity, as seen in

the close relationship between the Helmholtz free energy

(A) and the canonical partition function:

A ¼ 2kBT ln Z: ð3Þ

The practical utility of this is the following: potential

energies often can be readily calculated for a given system

and, because Z depends on the distribution of potential

energies, the results from a computer simulation can provide

a description of the partition function. Then, using relations

such as Equation (3), the free energy of a system can be

calculated directly; recall that free energy A ð¼ U 2 TSÞ
gives the maximum amount of work that a closed

thermodynamic system can do (in the canonical ensemble,

A is minimised at equilibrium). Finally, using the standard

Maxwell relations,[87] such as the fact that

ð›T=›VÞS ¼ 2ð›P=›SÞV , every thermodynamic quantity

(pressure, heat capacity, virial coefficients, etc.) can be

derived from this point.[88]Further informationon statistical

mechanics can be found inWidom’s cogent introduction [86]

and McQuarrie’s [85] comprehensive treatment.

3.1.3 What must we consider?

The aforementioned statistical quantities are functions of

the probability densities of microstates and their

associated energetics. Molecular energetics, in turn, vary

with molecular structure (loosely, potential energy) and

dynamics (loosely, kinetic energy). The many aspects of

molecular structure and dynamics can be synthesised into

a coherent framework by considering four basic principles:

(i) interactions are shaped by the structural and

physicochemical properties of inter-atomic contacts; (ii)

interactions are dynamical, and the macroscopic properties

of a system at equilibrium (e.g. ligand-binding free

energies [89,90]) could be exactly computed given full

knowledge about the microscopic dynamics of the

system’s phase space (all possible microscopic states,

populations of the microstates, transitions between them,

etc.; Figure 3); (iii) the relative population of different

regions of phase space (Figure 3(B)) define energy surfaces

for the system of molecular interactions (free energy surface,

potential energy surface) and (iv) these energy surfaces are

sampled (basins are populated, barriers are crossed) as the

biomolecular system dynamically evolves along a trajectory

Figure 3. (Colour online) Phase space and its sampling via MD and MC. (A) A diagram of phase space for the simple harmonic
oscillator, taken as a one-dimensional spring with a mass m attached. This dynamical system is described by the potential
UðxÞ ¼ 21=2kðx2 x0Þ2, where x is the coordinate of the mass, x0 is its relaxed (equilibrium) position, and k the spring constant (k ~
stiffness). Differentiation of this equation yields the force FðxÞ ¼ 2kðx2 x0Þ, which we can analytically solve for the values of position
and momenta as shown in (A); the position is labelled by a ‘q’, rather than ‘x,’ in panel (A) because ‘q’ is often used to indicate a
generalised coordinate in classical mechanics, and is the same as x for the simple case of a one-dimensional harmonic oscillator.
Consistent with our intuitive notion of oscillatory motion of a spring, note that (i) the mass reaches a minimal velocity (¼ 0) at the two
‘turning points’ of maximal and minimal compression of the spring (ðq; pÞ ¼ ½^qmax; 0�) and (ii) this dynamical system traces a repetitive
orbit in phase space. The phase space of a more complex dynamical system (e.g. a protein with N atoms) is inordinately more complicated
– it consists of ðq; pÞ3N26 dimensions, and trajectories in this space may be irregular (not periodic). Exploring such a hyper-dimensional
phase space requires some form of conformational sampling. Two well-established sampling approaches are MD simulations and MC.
What is the difference between these methods? MD aims to simulate, with physical realism, the actual motion of the particles in a system;
as described in Section 4, this is done by integrating the equations of motion to propagate the atomic coordinates along a trajectory in the
system’s phase space (t1 ! t2 ! t3· · · in (B)). In contrast, MC proceeds as a series of discrete ‘trial moves’ (e.g. ‘flip torsion angle 42 by
1808’). The sequence of trial moves are independent of one another, and are accepted or rejected by comparison of the Boltzmann-
weighted probability to a randomly generated number. Whereas MD is analogous to a game of connect-the-dots in phase space, MC can
be thought of as skipping dot-to-dot in this hyper-dimensional space.
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in phase space. These four considerations – physicochemical

interactions, dynamics in phase space, energy surfaces and

conformational sampling – provide a foundation for

understanding biomolecular simulations, as described in the

remainder of this section.

3.2 Physicochemical nature of molecular interactions

Structure and dynamics govern the molecular recognition

processes that define the function of a biomolecule. These

recognition events involve the non-covalent interactions

that occur between the standard chemical functionalities

in biopolymers and organic compounds – amines,

hydroxyls, carboxylates, amides, aromatic rings, thiols,

etc. Viewed hierarchically, a molecular machine as

complex as the ribosome (Figure 1(B)) is simply a

specific geometric arrangement of inter-atomic contacts

between such functional groups (structure), and its

stability is modulated by the dynamics of these intra- and

inter-molecular contacts. Accurate molecular simulations

of intra- and inter-molecular contacts require accurate

treatment of two basic types of non-bonded interactions:

electrostatic interactions [91] and van der Waals (vdW)

forces.[92]

Electrostatic and vdW interactions differ in their

relative magnitudes and in how that magnitude varies with

distance between the interacting atoms (r1;2). While

electrostatic interactions can often be an order of

magnitude stronger than vdW energies, both forms of

interaction vary greatly with intrinsic factors, such as the

types of atoms and bonding involved (element type,

hybridisation, etc.), as well as extrinsic factors such as the

dielectric of the local environment (‘1’ in the denominator

of the Coulombic term in Equation (5), which attenuates

electrostatic forces). Electrostatic interactions occur

between chemical groups that bear formal positive or

negative charges (ion pairs and ‘salt bridges’), or that

contain highly electronegative atomic centres with

substantial partial charges (the D–Hdþ· · ·– dA of a

hydrogen bond donor/acceptor pair). As a general term

for all other (non-electrostatic) forces, vdW interactions

include forces between two permanent dipoles, a dipole

and an induced dipole, or two induced dipoles (the latter

are also known as London dispersion forces [92]).

Electrostatic forces decay slowly with the distance

between interacting centres (Coulombic forces

F , 1=r 2, energies Uel , 1=r) and are therefore referred

to as long-range, while vdW forces are considerably more

short-ranged. VdW interactions are generally modelled by

a Lennard-Jones potential (Equation (5)), which contains a

1=r 6 attractive component that is rooted in the quantum

mechanics of London dispersion forces and a 1=r 12 term to

capture hard-sphere/exchange repulsion (not physically

based, a numerically convenient expression that can be

computed as the square of the r26 term [88]).

Though additional types of inter-atomic ‘forces’ are

occasionally invoked, such as hydrogen bonding, these are

not distinct physicochemical forces. For example, H-

bonds, though directional like covalent bonds, are

fundamentally electrostatic in nature. Similarly, the

hydrophobic effect, which is an important consideration

in ligand-binding and drug design, is not a distinct physical

force but rather a physical effect that stems from the

aforementioned forces (electrostatics and vdW) as applied

to the properties of liquid H2O (dipole moment, H-

bondingand clathrate-like structures of H-bond networks

[93]) under the laws of thermodynamics; the effect is

interfacial and is entropically driven (see, for example,

Chapter 8 in [92] and Refs [94–96]). Because electro-

statics and vdW interactions are the only fundamental

types of intermolecular forces of relevance to biopoly-

mers, MM–based FF equations are simple in overall

functional form (Section 4.3 and Equation (5)). These

functions, or potentials (a term synonymous with force-

field), consist of a limited number of bonded and non-

bonded terms, usually with all interactions taken as

pairwise. The bonded terms represent displacements of

bond lengths (stretching), angles (bending) and rotations

about covalent bonds (torsional angle); these deviations are

modelled as harmonic springs (bonds and angles) or

periodic rotation (torsional barrier). The non-bonded terms,

which capture all the electrostatic and vdW interactions,

correspond to contacts that may be intra-molecular, if the

two atoms are in the same molecule (such as between the

two domains of the kinase in Figure 1(C)), or inter-

molecular, if the contact occurs between entities in different

molecules (such as the antibiotic and the ribosome in

Figure 1(B)). Inclusion of electronic polarisability in FFs is

an active area of research, as mentioned later and in Box 4.

In summary, electrostatics and vdW forces are what

dictate the structure and energetics of biopolymer folding,

assembly and dynamics, as well as the binding of small

molecules, such as antibiotics or other drug compounds, to

molecular complexes. Note that even those physiological

processeswhichmay not seemnon-covalent in character—

e.g. electronic transitions accompanying bond formation/

rupture, photochemical processes — are still modulated by

non-bonded interactions in vivo. For instance, the signal

transduction cascades underlying vision rely on the

covalent attachment of a small polyene known as retinal

to the protein opsin, giving a photo-activatable membrane

receptor known as rhodopsin.[97,98] For this to ever occur,

the retinal molecule must diffuse to its binding-site in

opsin, where it undergoes photon-triggered cis ! trans

isomerisation in the sterically crowded protein interior;

thus, intricate dynamics are at play in each stage of this

process. In this sense, molecular dynamics govern virtually
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all physiological processes, even electronic or photoche-

mical ones.

3.3 Dynamical processes and phase space

The formation and stability of molecular interactions are

modulated by dynamical processes spanning several

decades, ranging from ps-scale rotations of solvent-

exposed side-chains near a ligand-binding site to much

longer time (<ms–ms) collective motions that enable

allosteric communication (Figure 2; see [99,100,58,101]

for examples). For macromolecules, there are three aspects

of any dynamical process to consider: (i) the timescale of

the elementary process; (ii) the spatial extent over which

the event occurs and (iii) the amplitude of motion. The

notion of characteristic times is perhaps the most intuitive

of these features: as suggested in Figure 2, various types of

dynamical processes occur on time spans that may be

narrow and well-defined (e.g. bond vibration), or possibly

much broader windows (the collective motions involved in

allostery, gated ligand-binding, and biopolymer folding

can span several log units [7]). The spatial extent may be

small and highly localised (bond vibration and side-chain

rotation), or the dynamical process may occur on the

length-scale of an entire protein domain, such as in a hinge

motion. A similar but not identical concept is the

amplitude of oscillatory motion: fluctuations may occur

on small or large spatial extents (e.g. two domains of a

protein). And, independent of this length-scale, the

amplitude itself may correspond to small-scale (<Å),

high-frequency motion (<ns times, corresponding to

<GHz in the frequency domain) or larger amplitude

(.10Å), low-frequency (<ms-scale) motion. As implied

in the foregoing, the frequency and amplitude of motion

are often inversely related; this is because a motional mode

can be estimated as a normal mode oscillation under a

quadratic potential (i.e. harmonic oscillation), for which

the mean-square fluctuation for a given amount of energy

is kBT=v
2
i , where vi is the frequency of mode i.[102] Slow,

high-amplitude motions correspond to ‘soft’ modes that

often involve rearrangements of large structural units

(helices, sheets or entire domains) and occur over large

spatial extents (domains, not side-chains). These long-time

dynamics consist of rigid-body motions such as the

shearing or twisting of secondary structural elements, the

rocking of one domain with respect to another about a

hinge and so on. Low-frequency, high-amplitude motions

can be thought of as being ‘slower’ because they entail

extensive sampling of conformational space, wherein the

motions of neighbouring regions are correlated partly by

chance (thermal motions are random), partly by virtue of

the pattern of hydrogen-bond connectivity in, say, an a-
helix versus a b-strand, and partly by the spatial pattern of

other non-bonded interactions between secondary struc-

tural elements. These correlated types of motions play key

roles in cooperativity and allosteric communication

between distant sites in a protein, and also in the

fluctuations that modulate the binding of ligands to an

effector site.[103] Because long-time dynamics are

relatively slow, their time regimes can also overlap the

diffusional association of two molecules, which is the first

step in molecular recognition.

The preceding discussion implicitly focused on the

dynamics of a single biopolymer in isolation. How do the

dynamics of a single protein relate to the behaviour of a

bulk quantity (NA molecules), as measured in a

biochemical assay of, say, ligand-binding affinities? By

linking microscopic, atomic-scale dynamics to the

macroscopic/thermodynamic properties of a system of

molecules, the three concepts of phase space, ensembles

and ergodicity answer this question and provide a

complete framework to elucidate how experimental

(bulk) quantities relate to the physical and dynamical

properties of the system’s constituents. Box 2 and the

legend to Figure 3 summarise these statistical mechanical

concepts. The principle of ergodicity is that an ensemble

(bulk) average of some property of a dynamical system

asymptotically converges to the time-average of that

property, as described later (Section 3.5). This is the

fundamental theoretical justification that allows us to

perform MD simulations of single molecules or com-

plexes, versus the computationally unfeasible task of

trying to simulate all < NA molecules in a test tube.

3.4 A unifying physical picture: degrees of freedom,

energy surfaces

Molecular interactions, A· · ·B, between biopolymers and

ligands involve an extraordinary number of DoFs. A DoF

is simply a well-defined parameter that quantifies some

property (typically geometric) of a system, where the

parameter is free to vary across a range of values

independent of other DoFs. Together, all the DoFs define

the precise state of a system. For example, a one-

dimensional spring at rest is characterised by a specific

mechanical equilibrium length, xeq; as the spring executes

dynamics in accord with Hooke’s law, the length at time t,

xðtÞ, deviates either as a compression or extension. This

deviation (x2 xeq) is a translational DoF of the spring.

Analogously, rotation about the central bond in ethane (w)
is an angular DoF, with well-defined bounds of

w [ ½0; 2p�. For both the macroscopic spring and

microscopic ethane molecule, the energy E (and its

negative gradient, the force ~F ¼ 27E) is typically some

particular function of the DoF: the spring’s energy varies

quadratically with its sole DoF (Figure 2), defining a

parabolic energy surface, while the ethane molecule’s

potential energy varies periodically with the dihedral w
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(see the sinusoidal torsion angle term in the FF equation of

Section 4.3). For a system with n DoF, the energy surface

is simply an n-dimensional surface, in n þ 1—dimen-

sional space, giving the energy as a function of the n DoFs.

[8,104]

The energy surface concept is entirely generic: surfaces

may correspond to only potential energy terms, as in MM,

or they may also include thermal energy, thereby

corresponding to free energies (as in MD). The hyper-

dimensional energy surface may be fairly smooth –

imagine a simple molecule such as butane in vacuo (few

DoF). Or, the surface may be corrugated,[105,106] with

peaks and valleys of vastly differingmagnitude and shape –

imagine a protein surrounded by solvent (solvent DoF also

would need to be accounted for in computing the energetics

of the system). A molecule of N atoms in 3D space has 3N

DoFs, of which 3N–6 are vibrational (3N–5 if themolecule

is linear), and the system’s conformational energy surface

can be naturally expressed in terms of these 3N–6 DoF as a

vibrational basis set.

Because of its generality, the energy surface offers an

integrated physical picture for all aspects of molecular

structure, dynamics, thermodynamics and kinetics. How is

this possible? Consider a protein P and two of its possible

states, PA and PB (e.g. active and inactive states of the

protein kinase in Figure 1(C)).PA is a specific 3D structure

(conformation) that maps to a particular point on the

energy surface, and transitions between structural

conformers (PA ! PB and PA ˆ PB) occur via dynamical

paths (trajectories) along this energy surface. Such

transitions persistently occur at finite temperature,

assuming any energy barriers between A and B to be

surmountable; and, at thermodynamic equilibrium there

will be no net change in the relative populations of

different regions of the energy surface (valleys, peaks and

plateaus). These relative populations reflect macroscopic/

thermodynamic energy differences (recall the Boltzmann

distribution), while the microscopic details of the

transition paths – barrier shapes and heights – dictate

the kinetic properties for elementary, single-step tran-

sitions in this ‘two-state’ behaviour. The discrete states A

and B, corresponding to two basins in the energy surface,

can be discrete structural or functional states of protein P
or any dynamical process (A/B may be bound/unbound,

folded/unfolded, etc.). Peaks (local maxima) along a

pathway from PA$PB are transition states, while states A

and B themselves are preferentially populated and are

referred to as local minima. The depth of a particular basin

in a ‘funnelled’ landscape is its enthalpy, while the width

of the energy surface near this local minimum reflects the

entropy of that state. (Recall that entropy is a measure of

the number of thermally accessible states, so a wide/

shallow basin corresponds to greater entropy than does a

narrow/deep basin; this ‘entropy/enthalpy compensation’

is why the deepest basin is not necessarily the unique

global free energy minimum.[47]) If the energy surface

under consideration is the Gibbs free energy, the relative

populations of PA and PB can be used to compute

standard-state free energy differences (DG8) for folding,
ligand-binding [89,107] or any other A N B process of

interest. Again, statistical mechanics is the link between

the microscopic dynamics of a single particle on the

energy surface and the bulk behaviour of an ensemble of

particles.

If biomolecular energy surfaces could be fully mapped,

we could compute any property of interest for a particular

system and its dynamics. However, the sheer number of

DoFs for even simple biopolymers leads to an exponentially

vast conformational space, making exhaustive exploration

of macromolecular energy surfaces an impossible task.

The high dimensionality of energy surfaces poses many

difficulties, so conformational sampling of the surfaces

becomes the crucial computational challenge.

3.5 A key computational goal: conformational

sampling

Because we are often concerned with the bulk properties

of a system, as determined via experiments, our essential

computational goal is to sample molecular conformations

across the energy landscape, in accordance with a well-

defined statistical mechanical ensemble. Thermodynamic

equilibrium is generally assumed in such sampling, though

this is not strictly necessary; for instance, there exist

‘steered’ and ‘biased’ simulation methods that are the

computational analogues of non-equilibrium, single-

molecule ‘pulling’ experiments.[108] If conformational

sampling is done properly – with properly weighted

microstates and sufficient sampling – then we can

compute accurate means, deviations and other statistical

values for many types of potentially interesting properties,

including (a) structural features, such as the radius of

gyration; (b) thermodynamic quantities, such as entropies

and free energies and (c) dynamical properties that supply

kinetic/mechanistic insights, such as the correlation time

for the motion of a specific loop that ‘gates’ the binding of

ligands to an effector site on a protein.[109]

3.5.1 Three types of methods, based on structure,

thermodynamics and kinetics

Conformational sampling approaches can be distinguished

from one another based on whether they supply

information about problem types (a), (b) or (c), listed

earlier. For instance, some sampling methods focus solely

on generating conformations and evaluating their energies,

perhaps as trial conformers for structure prediction or for

NMR structure determination. In such approaches, which

address problem domain (a), the ‘energies’ can be viewed
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very generally — not necessarily as physical quantities,

but rather as the values of objective functions that quantify

the discrepancy between a candidate structure and the

experimental data. With sufficiently extensive sampling,

optimal agreement between a structural ensemble and

experimental data can be achieved by minimising/

maximising such target functions.[75] The sampling

techniques in this class of methodologies – e.g. distance

geometry methods, genetic algorithms – are largely

heuristic and often are not physically based, though they

can be highly effective ways to sample conformational

space from a purely structural perspective (problem type

(a)). To illustrate the flexibility of these ideas, note that

non-physical sampling methods, such as genetic algor-

ithms,[8] can be combined with physics-based descrip-

tions of molecular interactions, such as an MM-based FF,

as done in the AUTODOCK software for protein/ligand

docking.[110]

Turning to the two other classes of approaches, (b) and

(c), an advantage of physics-based sampling techniques is

that they can be used to compute thermodynamic

quantities (problem type (b)). The two families of such

methods are distinguished by whether or not the method

aims to simulate the underlying dynamics of the system.

The first family of approaches, exemplified by Monte

Carlo sampling,[82] provides correct, Boltzmann-

weighted sampling of an ensemble, but does not attempt

to simulate the actual microscopic dynamics of the

ensemble. Such methods can be used to address questions

of structure (a, above) and thermodynamics (b, above), but

not kinetics (c, above).[8,10,81,111] The second family of

physics-inspired methods seeks to model – with physical

realism – the underlying dynamical processes. These

simulation-based approaches, of which MD simulations

are a prime example, can supply detailed information on

structural (a), thermodynamic (b) and kinetic (c) proper-

ties. Simulation methodologies range from a high level of

detail, such as all-atom MD incorporating explicit solvent

molecules,[46] to ‘implicit solvent’ models [112] that

enable more extensive sampling (longer simulations) by

treating the solvent as a dielectric continuum (thus

reducing the number of DoFs), to further simplified

‘coarse-grain’ models (e.g. each amino acid modelled as a

bead that interacts with other residues under an effective

pair potential that has been calibrated for such simulations

[73,113,114]). MD-based simulation methods can be

applied to study the conformational dynamics of single

proteins, and even molecular assemblies as complex as the

ribosome [115,116] or as large as an entire HIV capsid.

[117] To simulate molecular contacts and diffusional

association on long timescales and large spatial domains,

Brownian dynamics (BD) methods can be applied.

[118,119] The BD approach typically treats the interacting

molecules as rigid; thus, although diffusion-controlled

reactions and the long-time behaviour of large systems can

be simulated, atomically-detailed dynamics are not

modelled (see later). To clarify the relationships between

various sampling methods, two prevalent approaches (MD

and MC) are compared in Figure 3; further information on

conformational sampling and related simulation issues can

be found in van Gunsteren et al. [47].

3.5.2 Langevin dynamics as a general framework

The MD and BD simulation approaches can both be

understood as limiting cases of a single formulation of

classical dynamics, namely Langevin dynamics (LD). As

described later (Section 4), the central equation in MD is

Newton’s second law, ~F ¼ m~a, which describes the

classical mechanics of macroscopic systems. The Lange-

vin equation [10,120,121] is a phenomenological exten-

sion of this law which renders it more generally suitable

for dynamic simulations, such as in implicit solvent (e.g.

no explicit H2O molecules, but need to model a stochastic

heat bath). In LD, two terms are added to Newton’s

equation: (i) a frictional term that captures dissipative

effects, such as frictional drag of solvent molecules on the

solute and (ii) a noise term that corresponds to Gaussian-

distributed white noise, in order to model the random

collisions and ‘kicks’ between solvent and solute

molecules. These terms, which make the Langevin

equation a stochastic partial differential equation, are

meant to account for the neglected DoFs (e.g. from all the

H2O molecules). The two terms are linked via the

fluctuation–dissipation theorem of statistical physics

[122,85] and, because they are both thermal (statistical)

in nature, they offer a route to controlling the temperature

of a simulation system by adjusting the frictional and

collisional coefficients. This is useful because, for

instance, many biological simulations are performed in

constant-temperature ensembles such as NPT or NVT .

[123,124] The limit of zero frictional coefficient

corresponds to purely ‘inertial’ (Newtonian) dynamics,

wherein solvent effects are neglected and the Langevin

equation reduces to Newton’s second law. Reciprocally, in

the ‘diffusive’ limit of large frictional coefficients, the LD

formulation corresponds to more ‘random’ motion and

yields Brownian dynamics.

3.5.3 Sampling and ergodicity

Sampling tasks are exacerbated by two features of energy

surfaces: (i) their vast dimensionality and (ii) their finely

nuanced topography, featuring many peaks, valleys and

ridges of greatly varying magnitudes. These two problems

are inter-related. Problem (i) means that the degree of

computational sampling will be quite limited, making it all

the more important to sample the most relevant regions of

this space; here, ‘relevant’ is in the sense of low-energy
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regions, which contribute proportionately more to the

equilibrium ensemble average as per their Boltzmann

weights. The sampling limitation has motivated the

development of ‘importance sampling’, ‘enhanced

sampling’ approaches, and a host of related algorithms

(reviewed in [71]). Obstacle (ii) means that, in practice, a

simulation may get ‘stuck’ in a low-lying region of the

energy surface, with insufficient thermal inertia to

surmount local energy barriers. In such cases, novel or

biologically relevant conformational transitions may be

completely missed, or sampled an insufficient number of

times to enable statistically significant calculation of

dynamical properties (lifetimes, mean first passage times,

etc.). A general principle for sampling a physical

quantity, Q, which fluctuates with characteristic time

tQ, is that the dynamics should be sampled for at least a

decade longer than the correlation time [104]; i.e. the

simulation length should exceed 10tQ if statistically

reliable averages are desired. For these reasons, extensive

sampling is crucial in MD simulations of biomolecular

systems, where interesting transitions often occur on

timescales that are quite slow relative to simpler

molecular systems.

Getting stuck in a region of conformational space also

violates a fundamental axiom of statistical mechanics:

bulk/ensemble properties are calculated from a distri-

bution (Boltzmann or otherwise) under the assumption

that the sampled points are representative of the system’s

phase space. If we fail to sample any system

configurations that are energetically low-lying – and

therefore non-negligible contributors to the ensemble

average – then the computed thermodynamic properties

will not mirror the true properties of the system. If,

however, a simulation does not get trapped, we are left

with a useful result: since the system can explore all of

phase space, the distribution of conformations along a

simulation trajectory for just one particle will be

indistinguishable from the distribution for a solution of

many particles at one instant. This is the ergodic axiom:

all accessible microstates are visited, subject to some p.d.

f. that defines the system, in the limit of infinite time/

sufficient sampling. Alternatively, the time average of an

observable, A, for a single particle (denoted as �A) equals
the ensemble average of that quantity (denoted as

, A . ) for a macroscopically large set of those

particles,[85] as expressed in the following:

�A ¼ lim
t!1

1
t

Ð t
t¼0

dtA pNðtÞ; rNðtÞ� �
m

, A .¼ Ð · · · Ð dpN drN AðpN ; rNÞrðpN ; rNÞ
: ð4Þ

In these equations, t and t indicate time; rN and pN are

generalised coordinates and momenta of each particle

as a function of the N DoFs (6N-dimensional integral

over all DoF); and r denotes the equilibrium phase space

probability density function given, for example, by

Equation (2).

4. MD simulations

The motivation for MD simulations is manifold, and

includes studies of protein function (e.g. dynamical basis of

allostery [99,125]), proteinmalfunction (e.g. effect of point

mutations that alter the intrinsic catalytic efficiency of an

enzyme inmetabolic diseases [126,127]), themechanismof

protein self-assembly into fibrils and other polymers in

neurodegenerative diseases,[128] nucleic acid confor-

mational transitions,[129] the dynamical basis of specific

(and non-specific) protein· · ·nucleic acid recognition,[130]

the dynamical features of the binding of drug compounds or

small-molecule ligands to receptors [16,131] and other

types of molecular recognition events. An overview of the

MD method is given in Box 3 and Figure 5.

Box 3. Overview of MD simulations

. What is it? A computational method to numerically evaluate the equations of motion for a set of particles, such as

the atoms in a protein. The result is an MD trajectory, which is a detailed description of the dynamics of the system

on the timescale of the simulation.
. How is it done? The equations of motion for such a complex system are not soluble, neither in principle (many-

body problem) nor in practice (analytically intractable to solve for dynamics of 6N DoF, where N may exceed 103

non-hydrogen atoms in a small-sized protein). Instead, we discretise time and numerically integrate the equations

of motion via a finite difference method: Given a set of initial positions (riðtnÞ) and velocities (viðtnÞ) for each
particle i at step n (time tn), compute the forces on each atom (from the gradients with respect to the FF potential) to

obtain accelerations. Next use the positions (ri), velocities (vi) and accelerations (ai) with the classical equations of
motion to obtain updated positions and velocities for step nþ 1 ( ¼ time tn þ dt, where dt is the integration time

step, typically ,1–2 fs for biomolecular simulations).
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4.1 Why simulation as a route to dynamics?

MD simulations are just that – simulations – because

many of the timescales relevant to the biological functions

of proteins and nucleic acids (Figure 2) are experimentally

inaccessible. The functional dynamics of a biopolymer

modulate its intra- and inter-molecular interactions and are

of great physiological importance. For instance, an

enzyme’s ‘breathing’ motions may permit substrates to

diffuse into its active site and subsequently re-organise

into a productive substrate–enzyme complex.[132] The

thermal fluctuations mediating these and other bio-

molecular recognition events can range from large-scale

domain rearrangements and binding/unbinding events to

much smaller-scale changes (e.g. redistribution of rotameric

states of the conserved side-chains lining an active site). In

addition to this example of enzymes, detailed molecular

dynamics are what govern the inter-atomic interactions

occurring as ligands approach their cognate binding sites,

such as in the binding of agonists or antagonists to

receptors.[133] There are two key aspects of a molecule’s

dynamics to consider: the characteristic time-scales and

length-scales that describe the frequency and spatial extent

of the motion.[7] As described in Section 3.3, large-scale

motions are intrinsically complex and can occur as

combinations of many fundamental modes, harmonic or

otherwise; such motional modes are referred to as the

collective modes that mediate rare events. The difficulty of

accessing such dynamics via experimental approaches is

what motivates modern MD-based simulations.

4.2 Overview and justification of the method

By an MD trajectory we mean a list of positions and

momenta of eachparticle in a systemover time, as the system

samples its phase space (Figure 3). The complexity of even a

simple biomolecular system – in terms of the number of

particles,DoFs, and potential interactions – prevents us from

analytically solving for such dynamics using the equations of

classical mechanics. Instead, we compute trajectories by

approximating the equations of motion via numerical

integration: the instantaneous force acting on each particle

i is calculated, Fi

! ¼ 27U i, the forces are used to compute

accelerations, and the accelerations are used to update

particle velocities and positions. Is this valid? Is it reasonable

toperformclassicalMDsimulations (vs. quantumdynamics)

of protein-sized entities? Does our dynamics method need

to treat both the electrons and atomic nuclei?

These questions can be addressed by considering

two approximations rooted in the physics of molecular

systems: the thermal de Broglie wavelength and the Born–

Oppenheimer approximation. The thermal de Broglie

wavelength (L) for a particle of mass m is given by

L ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
, where h is the Planck constant, kB the

Boltzmann constant and T the absolute temperature.

Of most importance is the value of L relative to the mean

inter-particle separation in the system, , ri;j .. For

length-scales on which Lp , ri;j ., particle interactions

can be approximated as classical rather than quantum

mechanical.[85] Thus, while the dynamics of light atoms

(e.g. mass of hydrogen) at low temperatures (T < 0)

would require quantum mechanical treatment, classical

dynamics is a valid approximation for protein-sized

entities at typical temperatures of interest in biology

(< 300K). As for the electronic components of the

molecular dynamics, we can neglect these and treat only

nuclear motions because of the Born–Oppenheimer

approximation.[8]. This principle results from the fact

that electrons are so much lighter than nuclei that the

electron density ‘moves’ (in response to a force) two

orders of magnitude more quickly than do the nuclei.

Thus, we can view atoms in a protein as consisting of

electron clouds that respond virtually instantaneously to

shifts in nuclear positions; more formally, the quantum

mechanical wavefunction, which describes the full

dynamics of the system, is separable and can be factorised

into nuclear and electronic components, given by a pair of

Schrödinger equations. In this way, the electronic DoFs are

essentially absorbed into the effective interatomic

potentials (i.e. FFs) used in classical MD simulations.

Any MD-based methodology relies on two essential

components, one physicochemical (force-fields; Section

4.3) and one algorithmic (integrators; Section 4.4).

Regardless of the above issue of classical versus quantum

dynamics, the core problem in MD – integrating the

equations of motion – simply requires a set of forces with

which to update atomic positions. The algorithm is agnostic

about the source of the forces, which can come from ab initio

quantum mechanical calculations or, as is done in classical

MD simulations, by computing force as the gradient of an

empirical FF. Note that while the nuclear motions are treated

classically, the interatomic forces and electronic structure

still can be evaluated quantum mechanically at any desired

time-step in the trajectory. Though beyond the scope of this

article, hybrid QM/MM and ab initio MD approaches are

essential in order to model processes wherein the electronic

structure of a molecule is altered, such as the covalent bond

transformations that may occur in enzyme catalysis.[8,134]

4.3 Force-fields and the potential energy surface

A force-field encapsulates all that we believe to be

important about the physicochemical properties (Section

3.2) of the atomic interactions that govern molecular

structure and dynamics. As illustrated in Figure 4, the FF

expresses molecular interactions quantitatively, using

equations, free parameters and estimates of parameter

values. Macromolecular FFs, also known as potentials,

originated in molecular mechanics efforts of the late
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1960s.[135] Those efforts were aimed at calculating

primarily structural and stereochemical properties of small

organic molecules — conformational strain, geometry

optimisation, etc. In principle, computing the FF energy

as a function of 3D structure, for all possible 3D

conformations, would provide the complete potential

energy surface of a molecule.

The two defining features of an FF are its general

functional form and the precise numerical values it assigns

to the constant parameters in its equations. Many FF

implementations derive from the following general

equation, which gives the potential energy, Uð~riÞ, as a

function of position for each atom i. In this classic MM

approach, covalent interactions are taken as summations

over 1–2, 1–3 and 1–4 bonded terms, while non-bonded

interactions are modelled pairwise, as sums over Lennard-

Jones and Coulombic potentials:

Uð~riÞ ¼
X
bonds

kri ðr 2 r0Þ2 þ
X
angles

kui ðu2 u0Þ2

þ
X

torsions

k
w
i 1þ cos ðniwi 2 diÞ
� �

þ
X
i

X
j–i

41ij
sij

rij

� �12

2
sij

rij

� �6
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lennard2Jones 1226 potential

þ
X
i

X
j–i

qiqj

erij|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Coulombic term

:

ð5Þ

The FF parameters, which may number well into the

hundreds, list all the spring constants (k), reference bond

lengths (r0) and angles (u0), torsional angles (w),
multiplicities (n) and phases (d), Lennard-Jones parameters

(1, s), and partial charges (q), contained in Equation (5), for
all possible types of atoms and pairwise interactions

encountered in typical biomolecular systems. While bond

lengths and angles are handled in a fairly straightforward

and similar manner in different FFs, various biomolecular

FFs treat torsional potentials and other terms in subtly

different ways. For instance, AMBER and OPLS use specific

scaling factors for vdWor electrostatic interactions between

1–4 atoms,[136] and some CHARMM FFs employ grid-

based energy correction maps (‘CMAP’) for protein w/c
torsional barriers.[41,137] Regardless of this variation, for

all FFs a working set of values (a ‘parameter set’) is

obtained by optimally fitting the parameters, via linear or

nonlinear regression, against libraries of target data.[41].

These target data originate from two sources, either

empirical measurements (e.g. from thermochemistry, such

as heats of vaporisation, from structural databases and so

on) or ideal values obtained by QM calculations on small

model compounds (charge distributions, torsional barrier

heights and multiplicities, etc.). The model compounds are

small enough for QM calculations at very high levels of

theory, and the compounds chemically resemble the

constituents of biopolymers — the alanine dipeptide,

blocked amino acids, mono- and di-nucleotides, etc. For

these reasons, the FFs used in MD simulations or docking

are said to be parameterised, and are described as empirical

force-fields. Most modern FFs are transferable across

Figure 4. (Colour online) Molecular interactions and FFs, in
context. The core elements of a MM-based FF, such as is similar
to that used in MD simulations, are shown in the context of an
important molecular interaction: the binding of the cancer
therapeutic imatinib to ABL2 kinase (see Figure 1(C)). The
overall structure of the ABL2zimatinib complex shows the
location of the drug (ball-and-stick and semi-transparent vdW
spheres); protein side chains that interact at the binding site (ball-
and-stick) are shown at atomic-level detail in panel (A). The
atomic interactions between ABL2· · ·imatinib (B) include polar
contacts (yellow dashes) such as hydrogen bonds, interactions
that are more strongly electrostatic in character (dþ· · ·d2), and
numerous vdW interactions between non-polar groups of atoms
(not shown for clarity). The components of a typical FF are
schematically drawn in (B), showing the roles of these inter-
atomic interactions (bond angle bending, torsional rotations, etc.)
in mediating the molecular recognition process. In classical MD,
the full potential energy (U) is taken as a sum of various types of
physicochemical interactions (shown in (B)), and each type of
interaction is treated explicitly via specific terms in the FF
equation (see text, Equation (5)). The terms in Equation (5)
account for (i) bond stretching (1–2 interactions), angle bending
(1–3 interactions) and torsion angle rotation, as well as (ii) non-
bonded interactions between apolar groups (a Lennard-Jones
potential to model dispersive interactions). The short-range
component of electrostatic interactions between fixed partial
charges is modelled via Coulomb’s law, and long-range
electrostatics across the PBC lattice are treated via Ewald
summation.
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related classes of compounds, but make assumptions such

as pairwise additivity and the neglect of atomic

polarisability (see Box 4 for these terms). Because the FF

defines a system’s internal energy, the accuracy of a

simulation is ultimately limited by that of its FF.

Approximations are necessary to make simulations feasible,

and the simple functional form of typical FF equations

represents a compromise between accuracy and compu-

tational tractability. For more information, lucid accounts of

FFs can be found in Refs [41–44,138–140], including

reviews of available FFs (AMBER, CHARMM, etc.) and

their applicability to various classes of biomolecules.

(Virtually all modern FFs are applicable to polypeptides, but

some have been more finely tuned than others towards

nucleic acids, carbohydrates or lipids.)

4.4 Integrating the equations of motion and computing
a trajectory

The integrator is the core of any MD-based simulation

method (Figure 5). The basic algorithm is the following: given

atomic positions and velocities at time t, compute the force on

each atom from the negative gradient of the energy; from

classical mechanics, these forces yield the acceleration of

each atom (~F ¼ m~a) which, in turn, is used to numerically

integrate the equations of motion and update the coordinates

and velocities, bringing us to time t þ dt. In this way, the

system dynamics are propagated from t! t þ dt to yield the
MD trajectory (in general, dt < 1 fs). Recall that potential

energy is determined by the 3D structural coordinates, in

conjunction with the FF; kinetic energy is computed from

atomic velocities, using Equation (9) in Section 4.7.2. In

principle, each of a system’s N atoms could interact with any

other atom via bonded or non-bonded interactions, if not at

time t then possibly at another time. Therefore, assuming the

overall problem can be decomposed into pairwise inter-

actions, and in the absence of any simplifying numerical

assumptions or algorithmic tricks, the computational com-

plexity of the coreMDcalculation scales asOðN 2Þ; this ‘inner
loop’ over pairwise interactions is the main bottleneck inMD

codes, as elaborated later and in Refs [81,104,141,142]. In

practice, the scaling can be improved to OðN logNÞ via cut-
off schemes, particle-mesh Ewald (PME) methods, and other

approaches described in Section 4.5.

Because the equations of motion cannot be integrated

analytically, many algorithms have been developed for

numerical integration by discretising time (dt) and applying
a finite difference integration scheme [143]; textbooks on

differential equations can be consulted for the mathemat-

ical bases of these methods (e.g. [144]). MD integrators

differ in their balance between numerical efficiency

(greater number of simplifying assumptions) and accuracy

(fewer assumptions), and the closely related issue of

robustness — How sensitive is trajectory stability to time

step dt? Using a larger dt would yield a longer trajectory,

but the larger time step also may render the dynamics

unstable, with energies diverging, the protein structure

‘exploding’, etc. To demystify MD integrators (black box

in Figure 5(A)), the remainder of this section sketches a

simple derivation of the ‘leapfrog’ method (Figure 5(C)).

To derive the leapfrog integrator, begin by considering

the location, given by the position vector r, of a particle at

time t. Express the position r, velocityv (first time-derivative

of position, also denoted by a single prime r0), acceleration a

Box 4. Concepts and terminology: Force-fields

The following terminology often appears in connection with FFs:

. Additivity: If the forces and energetics of the interaction between two particles, A and B, are not influenced by the

presence of a third particle, C, then the interaction is said to be additive; in this case, because we are considering

pairs of particles, the forces are described as pairwise additive.
. Polarisability: The susceptibility of the electronic distribution about an atomic nucleus to distortion by an external

electrical field, such as may arise from neighbouring charged groups. This can be an important effect in highly-

charged systems such as nucleic acids. Until recently, polarisability has been almost always neglected in MD FFs

and simulations, as its inclusion makes the MD calculation more costly.
. Transferability: In FF development, this is the idea that the physicochemical parameters developed for so-called

model compounds (e.g. a blocked alanine) can be transferred, without loss of validity or accuracy, to chemically

related compounds (e.g. an alanine residue in a polypeptide); such parameters are typically derived via high-level

QM calculations that are feasible only for small model compounds. The notion of transferability is fundamental to

the development of generalised FFs.
. Water model: The precise geometric structure (bond lengths, angles) and electronic structure (e.g. location and

magnitude of partial charges) used to represent a H2O molecule, as well as the types of physical effects included in

the treatment (e.g. polarisability). Several water models have been developed over the years (TIP3P, SPC, etc.); the

main differences between them concern the number of ‘interaction sites’ (e.g. lone-pairs as dummy sites), how

structural flexibility/rigidity is handled and how water molecule polarisability is treated.
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(second derivative), and all higher-order derivatives of the

particle dynamics (rðnÞ), as Taylor series expansions in dt,
thereby arriving at the following set of equations:

rðt þ dtÞ ¼ rðtÞ þ dtvðtÞ þ 1

2
dt 2aðtÞ

þ 1

3!
dt 3r000ðtÞ þ · · · ð6aÞ

vðt þ dtÞ ¼ vðtÞ þ dtaðtÞ þ 1

2
dt 2r000ðtÞ

þ 1

3!
dt 3rð4ÞðtÞ þ · · · ð6bÞ

aðt þ dtÞ ¼ aðtÞ þ dtr000ðtÞ þ 1

2
dt 2rð4ÞðtÞ

þ 1

3!
dt 3rð5ÞðtÞ þ · · · ð6cÞ

Relative to the r, v and a leading terms, the products with

higher-order derivatives can be taken as < 0 because of the

ðdtÞn coefficients; similarly, equationswith third- andhigher-

order leading terms are not shown. Truncation of the

aforementioned series at the third-order derivatives (i.e. all

terms higher than acceleration) gives the set of familiar

kinematics equations, such as the result that the velocity at

time t þ dt can be computed from the positions at the start

and finish of a t; t þ dt
� �

time interval: vðtÞ ¼ ðrðt þ dtÞ2
rðtÞÞ=dt (indeed, this is the definition of the derivative, in the
limit as dt! 0). Now, recall from calculus that the mean

value theorem ensures that for any differentiable function

f there exists some point b, in a closed interval a; c
� �

from the

domain of f , at which the derivative f 0 equals the average

value of the slope across the entire interval (note that this

mean value, the slope at point b, corresponds to the slope of

the secant line passing through a and c). In other words, there

Figure 5. (Colour online) MD simulations in a nutshell. MD simulation is a multi-stage process that employs several chemical, physical,
and computational principles (A). Working left ! right in panel (A), an initial 3D structure is prepared by the addition of solvent and
other moieties, giving an initial list of atomic coordinates (time t0). These 3D positions, together with the covalent chemical structure of
the molecule, define the molecular system (blue box). Literally, all of the precise atomic details that define a complete, solvated
biopolymer structure are contained in the chemical topology file: the standard amino acids, nucleotides, common ions, the detailed
patterns of covalent connectivity and the orders of bonds — which atoms are bonded to one another, various hybridisations (sp 2, sp 3),
whether an amine is 18 or 28 and so on. FFs also include a parameter file associated with the topology file, defining the functional form of
the potential energy equation (Figure 4(B)), as well as the reference values for bond lengths (r0), angles (u0), multiplicity and phase of
torsional angles, Lennard-Jones parameters and so on. Conceptually, the three parts of an MD simulation system (green box) are (i) the FF
(grey box; not system-specific); (ii) the atomic positions and velocities over time (which are system-specific, and which give the MD
trajectory) and (iii) the key details that describe the simulation to be performed – which thermodynamic ensemble, whether PBC (B) are
employed, cut-off lengths for evaluation of non-bonded interactions and so on. Taking this system as input, the MD software (black box)
computes the forces on each atom from the gradient of the potential,2 7Uð~rÞ. Newton’s second law relates these forces to the acceleration
of each atom, ›2~r=›t 2, which, in turn, relates to the atomic position and velocity by classical mechanics (C). The MD engine generates a
trajectory by discretising time, often with an integration step dt < 1 fs, and integrating the equations of motion. To achieve this, the
algorithm iterates over all inter-atomic interactions (bonded and nearby non-bonded pairs), computes the forces of atoms on one another,
and then uses these forces to update the positions and velocities of each atom, via numerical methods such as the ‘leapfrog’ integrator
(C; see Section 4.4).
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exists some point b [ a; c
� �

such that f 0ðbÞ ¼ ðf ðcÞ2
f ðaÞÞ=ðc2 aÞ holds true. Application of the mean value

theorem to the third-order truncated form of the foregoing

Taylor expansions of the position rðtÞ and velocity vðtÞ
establishes the two halves of the leap-frog integrator

equations (Figure 5(C)). Note from the leap-frog equations

that a slight computational inconvenienceof this algorithm is

that the position and velocity updates are offset byhalf a step,

dt=2 (Figure 5(C)); this inconvenience becomes asympto-

tically negligible as we approach the number of integration

steps typical in biomolecular simulation (for dt ¼ 1 fs, a 50-

ns trajectory takes 5 £ 107 integration steps). The ‘order’ of

an integrator, denoted usingbig-O notation asOðNÞ for order
N, is the highest-order term in the foregoing series expansion

which is included in the calculation (i.e. it denotes the level

of approximation). Because leap-frog equations neglect

derivatives of order three and higher, this integrator is said to

be a second-ordermethod.[104]Many further issues concern

the application of integrators in MD, such as trajectory

stability (robustness of the integrator), multiple time-

stepping schemes, time reversibility, suitability of the

integrator equations for simulating dynamics in various

ensembles and constraint schemes (freezing-out fast

motional modes, such as sub-fs vibration of X–H bonds,

enables larger time steps). These and related topics are

discussed inmany simulation andmodelling texts, including

those by Leach [8], Schlick [10], Haile [104] and Allen and

Tildesley [141]. Also, Frenkel [145] and others (e.g. [146])

have recently presented some of the potential pitfalls

inherent to simulation studies.

4.5 Optimising the integrator

The evaluation of bonded terms in the system Hamiltonian

is straightforward. The integrator maintains a list of all

bonded interactions in the system, known from the

covalent structure, and, at each time step, evaluates these

energies. Bonded interactions correspond to bond

distances, angles and dihedrals, and therefore are also

known as 1–2, 1–3 and 1–4 terms. Since the number of

bonded interactions grows as OðNÞ for N particles, the

evaluation of bonded energy terms is also OðNÞ. (In

classical MD, bonds are not altered and the electronic

structure of the molecule is preserved.) Non-bonded forces

are more expensive to calculate because there are many

more of them: both vdW and electrostatic interactions

occur between all pairs of atoms, and for N atoms there are

NðN 2 1Þ=2 such pairs. Therefore, naive algorithms for

non-bonded forces would scale as OðN 2Þ.[81]
To optimise the non-bonded vdW force evaluation, a

cut-off radius is chosen, typically near 10 Å. All pairwise

interactions exceeding the cut-off radius are assumed to be

negligible. A side effect of this method is a discontinuity in

energy as atoms cross the cut-off distance, which creates

an infinite spike in the energy gradient and therefore an

infinite force; such a scenario leads to system instability

[81] and lack of energy conservation. Smoothing functions

alleviate this problem by removing the discontinuity;

specifically, forces are evaluated using the vdW potential

up to a ‘switching distance’ (often <9 Å), and the vdW

potential is smoothly decreased to a value of zero at the

<10 Å cut-off (see, e.g. the NAMD user guide for a

technical discussion [147]). Though this algorithm makes

OðNÞ energy evaluations, it still must make OðN 2Þ
distance evaluations — the distance to each other atom

must be checked against the cut-off distance. To avoid this

bottleneck, nonbonded ‘pair-lists’ are used to track which

atoms may be within the cut-off. A pair-list distance

(<12 Å) is chosen, and each atom keeps a record of which

other atoms were within this distance. Then, during the

evaluation of vdW energies, only atoms in the pair-list are

considered. After multiple time-steps, pair-lists are

updated to account for atoms that may have moved in/

out of the distance limit; these updates must occur often

enough that no atom moves from outside of the pair-list

distance to inside the cut-off distance before a regeneration

cycle. Though regenerating the pair lists is OðN 2Þ, it

occurs only infrequently, and can be further reduced to

OðNÞ using cells, as described later.[142]

Electrostatic interactions decay less rapidly than vdW

interactions, so using a simple cut-off scheme to define the

set of necessary force calculations would require a very

large cut-off. Instead, the electrostatic interaction for the

simulation system and all its periodic images (an infinite

crystal) is generally treated using the PME approach,

which decomposes the electrostatic energy into two parts:

a short-range component that is evaluated with high

accuracy, and a long-range component that is approxi-

mated via discretisation of charges on a grid and

calculations of reciprocal-space structure factors using

this mesh. The short-range component is evaluated in real

(or ‘direct’) space in much the same way as the vdW

energy described earlier, and therefore goes as OðNÞ. The
long-range component is generally evaluated using Ewald

sums in Fourier (or ‘reciprocal’) space, using the fast

Fourier transform (FFT) for calculation of structure factors

and spline-based interpolation of the reciprocal-space sum.

[148] FFT calculations scale as OðN logNÞ, so the overall

scaling of the popular PME algorithm is also OðN logNÞ.
[149] A detailed description of the PME method is beyond

the scope of this work; further information can be found in

Refs [8,148].

Computationally expensive MD simulations are

frequently performed on distributed-memory supercom-

puters. In a distributed-memory supercomputer, a set of

independent computers are connected by a high-speed

network, and each computer is responsible for simulating

some regions of the overall system. Each region

periodically informs its neighbours about the movement
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of its atoms. If the regions are larger (in every direction)

than the cut-off distance, then each region needs to

communicate only with its 26 neighbours.[142] Since

most communication occurs between neighbouring

regions (some global communication is necessary for

electrostatics and monitoring), atomistic MD codes such

as NAMD [142] can scale to hundreds of thousands of

processors with systems consisting of tens of millions of

atoms.[150] Other available MD codes for biomolecular

systems include popular, long-standing software suites

such as AMBER,[136] CHARMM,[151] GROMACS [152]

and LAMMPS,[153] newer packages such as DESMOND

[154] and TINKER,[155] and a host of other programs.[156]

4.6 Some practicalities: from theory to practice

Beyond the integrator, many practical questions must be

considered in preparing to simulate. The first stage of any

simulation (system setup) is to prepare the molecular

system, which includes the biomolecular solute and any

solvent, ion, ligand and other. molecules. The components

of a ‘simulation system’ are defined in Figure 5(A).

Simulations are typically performed in the NVT or NPT

ensemble in order to mimic experimental conditions as

closely as possible. Periodic boundary conditions (PBCs;

Figure 5(B)) help avoid surface effects (i.e. mimic bulk

solvent), though of course real solution-phase systems are

not loosely packed crystals; as mentioned earlier, long-

range electrostatics are handled in periodic systems via

Ewald sums.[157] Suitable system set-up also requires us

to consider (i) many chemical details (protonation states of

ionisable residues, ionic strength, etc.); (ii) which FFs to

use (plural, if comparative analyses are being undertaken

such as in [158] or [140]); (iii) addition of solvent

molecules, and choice of water model [159]; (iv) decisions

regarding non-bonded cut-off distances and switching

functions and, finally, (v) possible preliminary stages of

energy minimisation to relax the starting structure by

relieving high-energy inter-atomic contacts (up to this

point, the 3D structure of the biomolecule has not ‘seen’

the potential energy surface defined by the chosen FF).

Once these setup stages are complete, the MD system is

subject to a brief heating and equilibration phase (often<
1–5 ns), followed by a production phase of free dynamics,

during which time atomic coordinates and velocities are

written to disk every few ps. Common practices in setting-

up simulations are available in the literature for generic

biomolecular systems,[160,124] nucleic acids [161] and

membrane proteins.[162] With modern computing power,

production-length simulations are often <50–100 ns,

and the longest are on the order of milliseconds.[69,163]

The exact duration depends on a balance of system size,

compute resources, user patience, the timescale of the

biochemical questions motivating the simulation (Figure 2)

and, ultimately, how much sampling is required to achieve

converged structural or dynamical properties.

Seemingly abstract simulation concepts can have very

tangible consequences for how we proceed in performing

an MD calculation. These consequences are of practical

concern to the user of a software package, and can be

transparently understood in terms of basic principles. For

example, consider the role of cut-offs in all-atom MD

simulations. We are generally interested in the dynamical

properties of a protein in bulk solution, not isolated in a

nm-sized droplet of water, which would place the protein

at a water/vacuum interface. To avoid potentially

artefactual surface effects, a protein is simulated under

PBCs (Figure 5). The PBC geometry is essentially a highly

solvated crystal, packed loosely enough so that

solute····solute interactions across cells are negligible

(e.g. the DNA in Figure 5(B) and its periodic images). An

inherent geometric property of PBCs is that the so-called

minimum image convention must be applied in order to

avoid over-counting particle interactions (see the central

cell and coloured balls in the upper-right of Figure 5(A)).

[8,141] This, in turn, demands the use of distance cut-offs

for evaluation of non-bonded forces and long-range

electrostatics. As the final step in this chain of

implications, note that the cut-off distance (rcut) cannot

exceed half the cell edge (for simplicity consider a cubic

unit cell), lest pairwise interactions be double-counted.

This line of reasoning is motivated by conceptual factors,

such as the desire to simulate a biomolecule in bulk

solution rather than at an air/water interface. A second,

practical reason for using cut-offs, to lessen computational

costs, was described in Section 4.5. A cut-off distance

rcut < 10–11 Å is generally used in biomolecular

simulations, as a compromise between accurate evaluation

of enough non-bonded forces (necessary for trajectory

stability, energy conservation, etc.), versus excessive

computational cost (the number of pairwise non-bonded

forces to be evaluated scales as r3cut [142]).

4.7 Interpreting and assessing results

4.7.1 Trajectory analysis via root-mean-square

deviation

The raw data from a simulation is a list of coordinates riðtÞ
and velocities viðtÞ as a function of time (t) for each atom i.

That is the trajectory. These data can be structured as a pair

of two-dimensional arrays,R andV. MatrixR is built from

the 3N Cartesian coordinates (x; y; z) for the N atoms and,

in the other dimension, is index by the simulation time t

(and similarly for the velocities, V). Equivalently, a

column vector of R gives all the coordinates for all atoms

at one time-step, while a row vector gives the time series of

a particular coordinate of one atom. Coordinates are

typically written every <1–2 ps, meaning that millions of
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snapshots are created in a ms-scale simulation. What

knowledge can be extracted from such dense data?

Simulation analyses can range from routine and

straightforward to highly sophisticated, and can be either

highly generic or more specialised to the type of system/

question at hand. An example of a generic type of

trajectory analysis, applicable to any system, is compu-

tation of the root-mean-square deviation (RMSD) of

coordinates over time. Though the RMSD is not always an

ideal metric for assessing equilibration and structural

stability,[164] an RMSD analysis is performed early on

(within the first few ns) in virtually all atomistic simulation

studies.[24,160] The RMSD for two coordinate sets, sx and

sy, is readily defined as:

RMSDðsx; syÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1k~rsx;i 2 ~rsy;ik2
N

s
: ð7aÞ

In this formula, ~r is the vector of position coordinates for

each of N atoms, with each atom pair indexed by i; sx and

sy can, for example, be two frames in a trajectory (i.e.

columns x and y of R). Closely related, the root-mean-

square fluctuation (RMSF) of atom i, in a structure

evolving over time, sðtÞ, can be formulated as:

RMSFðsðtÞ; iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf

n¼0k~rs;iðtnÞ2 , ~rs;i . k2
f þ 1

s
; ð7bÞ

where now the summation is performed over all time-steps

of interest (from n ¼ 0! f ), and , ~rs;i . and ~rs;iðtnÞ are
the time-averaged and instantaneous (tn) coordinates of

atom i, respectively. Slightly more sophisticated, we can

compute two-dimensional matrices of pairwise RMSDs,

thereby avoiding the issue of precisely which 3D structural

snapshot should be taken as the reference point for the

calculation (the starting structure?, after 1-ns of equili-

bration?, an averaged structure?, etc. [129]).

4.7.2 Principal component analysis and related

approaches

As an example of a more sophisticated analysis approach,

principal component analysis (PCA) can be used to

calculate the directions and amplitudes of greatest motion

along a simulation trajectory. PCA is a linear algebraic

method of ‘dimensionality reduction’, meaning it can map

data-sets of high dimensionality — e.g. the vast vector

space (V) spanned by the 3N coordinates of a simulation

system, sampled across millions of times teps (the matrix

R in Section 4.7.1) — into a new vector space (V0), defined
by an alternative basis set. The key feature of the PCA

approach is that this new, alternative basis set spans the

bulk of the variation (literally, the statistical variance) that

occurs in the original high-dimensional data, and it does so

in a more informative manner than does the original/naive

basis set: We obtain a rank-ordering of the fraction of

variance that is accounted for along each new basis vector,

and the major directions of motion can be expressed as

simple linear combinations of the new basis vectors (also

known as principal component vectors, as described later).

A major strength of PCA is that it is a non-parametric

method for analysing high-dimensional data-sets, such as

the many frames comprising an MD trajectory. PCA is free

of heuristics, assumptions about dynamical modes, etc.,

and the PCA algorithm takes trajectory data as its only

input. A fundamental limitation of PCA is that the V! V0
mapping alluded to above is a linear transformation;

therefore, subtle non-linear correlations will be missed,

such as correlated motion along circular paths (see the

‘Ferris wheel’ example in [165]). PCA captures only that

underlying structure of the data that is expressible as linear

correlations.

Useful introductions to PCA are available, from both

general (e.g. [165,166]) and MD-specific (e.g. [167])

perspectives. In brief, consider a trajectory comprised of m

frames, for a simulation system of N atoms. Begin by

removing the six rigid-body translational and rotational

DoFs of the molecule via least-squares structural super-

imposition of each frame to a reference (e.g. the initial

structure). Then, construct a 3N £ m matrix, R, from the

3N Cartesian coordinates at frames 1; 2; . . . ;m. In this

matrix, column j is the vector of all atomic coordinates at

frame j. PCA is then achieved by (i) using R to construct

the variance-covariance matrix, C, of 3D coordinate

displacements ~r (vs. trajectory-averaged mean coordi-

nates, , ~r .), and then (ii) diagonalising C to obtain the

principal components of the motion, denoted ~pi, as

projections onto the eigenvectors of this covariance

matrix.[168,169] These two steps correspond to the

following pair of equations:

C ¼, RRT .¼, ð~rðtÞ2 , ~r .Þð~rðtÞ2 , ~r .ÞT .; ð8aÞ

C ¼ YLYT; ð8bÞ

where Y is the orthogonal transformation that we seek to

discover to diagonalise C, L is a diagonal matrix

containing the corresponding eigenvalues (l’s), and a

superscript ‘T’ denotes the transpose. Note that C is a

symmetric 3N £ 3N matrix, from which the linear cross-

correlation matrix is obtained simply by normalising each

element ci;j by the factor ðci;icj;jÞ1=2; viewed this way, the

diagonal elements of C are the mean-square atomic

fluctuations, , jDri!j2 ., that appear in Section 4.7.3.

The columns of Y are the eigenvectors of C. The original

trajectory coordinates, R, can be projected onto these

eigenvectors, ~ui, in order to visualise the motion along

each of those directions; doing so gives the corresponding
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~pi principal components. Notably, the eigenvectors ~ui are

sorted in decreasing order of their corresponding

eigenvalues, li. Thus, eigenvector ~u1 is the direction

along which the greatest motion occurs – i.e. the direction

that accounts for the largest fraction of variance in atomic

positions across the data-set. The corresponding eigen-

values give the statistical variance along each mode – i.e.

the amplitude of motion, measured as mean-square

displacements. For proteins, an empirical finding is that

the first several ~ui’s account for much of the variance in

atomic positions, at least on relatively short timescales

where the assumption of linearity is unlikely to break

down; for this reason, PCA is also known as ‘essential

dynamics’.[168] High-amplitude vectors, which corre-

spond to low-frequency modes in the harmonic approxi-

mation, are often taken as being functionally important

dynamical modes; for instance, a ‘hinge’ between two

protein secondary structural elements, about a specific

direction given by principal component ~ui, and with a

particular magnitude (li), may elucidate the dynamical

basis for ‘gating’ of an active site. As a further step, we

may pursue clustering of protein conformers in the

reduced dimensionality space of the first few principal

components (the V0 space, mentioned earlier), rather than

in the original Cartesian basis; such approaches can be

used to compare the ‘essential subspaces’ of the dynamics

of different proteins, assess trajectory equilibration, etc.

Finally, note that PCA is closely related to other

eigenvalue decomposition approaches, such as normal

mode analysis and quasi-harmonic analysis (QHA). For

example, mass-weighting the terms in the covariance

matrix gives the QHA approach which, in turn, can be used

to estimate the conformational entropy from an MD

trajectory.[170–172]

In addition to a PCA decomposition of the trajectory,

other quantities can be computed by relying on statistical

mechanics as the link between raw trajectories (dynamics)

and bulk thermodynamic observables. For example, we

can compute the velocity autocorrelation function from a

trajectory as an estimate of the diffusion coefficient [141];

similarly, other trajectory-derived correlation functions

can be calculated and compared to experimentally

characterised transport coefficients. As another example

of the experiment $ simulation $ theory link, the radial

distribution function (RDF) is a versatile theoretical

concept that can be computed from trajectories and used in

connection with both theory and experiment. As the name

implies, an RDF gives the distribution of particles, or

number density, in a simulation system as a function of

radial distance (i.e. isotropically averaged) from a

reference particle, averaged again over all relevant

reference particles. This equilibrium quantity also can be

viewed as the distribution of all distances between all pairs

of particles (a spatial pair correlation function), and it is

therefore deeply related to the time-averaged structure of a

system of particles. In this way, the RDF directly links to

experimentally measurable quantities that report on inter-

particle separations, such as solution scattering profiles

obtained by small-angle X-ray scattering.[173,174] An

MD trajectory provides all coordinates (structures) at

every time-point of interest, meaning we can use a

trajectory to compute any desired RDF [104] – between

all oxygen atoms in water, between a particular set of ions

and a particular base in RNA,[175] etc. – for joint analysis

with experimental scattering data. That is the experiment

$ simulation link. As an example of the other direction

(simulation $ theory), the RDF is intimately related to the

statistical mechanical potential of mean force (PMF; [85]),

and to the use of the PMF concept to justify the derivation

of pairwise statistical (knowledge-based) potentials from

databases of known 3D structures.[176,177] Thus,

simulation-derived RDFs can also facilitate the testing of

theoretical models and approaches.

4.7.3 Reliability, validation and relative strengths of the

simulation approach

Simulations can be viewed as more predictive than

conclusive. This is true of any purely computational

approach and, indeed, any method taken in isolation

(experimental or computational). What simulations lack in

certainty, versus a set of carefully controlled biochemical

experiments, they make up for by being the only widely

available approach that can provide high-resolution

information about the dynamics of virtually any

biomolecular system, in both space (atomic-resolution)

and time (sub-ps time resolution). The ‘validity’ of a given

MD trajectory partly depends on the exact biological

question being considered (was the system simulated long

enough?), as well as a host of potential technical concerns.

These technical issues are numerous and are often system-

specific; the remainder of this section is limited to a few

illustrative points.

Catastrophic errors often manifest themselves early in

a trajectory, and often can be readily identified. For

instance, the PME approach to long-range electrostatics

can be sensitive to electroneutrality of the simulation

system: if the simulation cell contains excess electric

charge because counter-ions were not added, then lattice

sums will diverge to infinity. In practice, whether or not

this problem occurs depends on the capabilities of the MD

software and its default configuration settings. For

instance, non-neutral cells are auto-detected by many

MD codes and a uniform ‘neutralising plasma’ is applied

as another term in the Ewald sum; inclusion/exclusion of

this term is akin to the crystallographic ~F000 structure

factor, the amplitude of which is the number of electrons

per unit cell, but which is an arbitrary additive constant in

typical electron density map calculations. Errors in
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constructing a PBC cell can result in atoms unfavourably

interacting with other image atoms, yielding energy

divergence and trajectory instability. Finally, simulations

are also susceptible to less severe (but also more subtle)

errors, such as the possibility of periodicity-induced

artefacts for the PBC simulations that are customary in

biomolecular MD.[178]

Efforts to ensure a reliable, or at least stable, trajectory

must be made in the earliest stages of system selection and

preparation (protonation, addition of ions, solvation, etc.),

before the lengthy production phase commences.

[24,124,160] Successful equilibration is vital, at least to

the extent possible,[146] and can be judged in terms of

both structural stability and conservation of thermodyn-

amic quantities. Structural stabilisation of a trajectory can

be assessed by monitoring properties such as secondary

structural content, by visual inspection in a molecular

graphics suite such as VMD,[179] and by plotting

quantities such as the radius of gyration or RMSD to see

that the system has not unfolded or dissociated (in the case

of a supramolecular assembly). For thermodynamic

equilibration, those bulk properties that are expected to

be conserved for the particular ensemble being used

should reach stable values, generally within the first few

hundred ps of simulation; bulk quantities will fluctuate,

but should show no systematic drift. For instance, in

addition to conservation of total system energy, we would

expect temperature stability for simulations in an

isothermal ensemble such as NPT . In practice, temperature

can be monitored via an instantaneous ‘kinetic tempera-

ture’, Tk. This quantity can be computed at time step t from

a trajectory’s atomic velocities by using the equipartition

principle and the definition of kinetic energy in terms of

particle velocities [141]:

TkðtÞ ¼ 1

Nf kB

XN
i¼1

jpi!ðtÞj
mi

; ð9Þ

where i indexes all N particles of momentum ~p and mass m

and the other symbols are as used earlier. The Nf in the

denominator of the prefactor is the number of DoF. This

term may equal 3N for the components of velocity for a

monoatomic particle in 3D or, for example, 3N 2 Nc if Nc

internal constraints are applied; the exact details depend on

the exact dynamical system and simulation protocol.

Averaging over manyMD time-steps yields T ¼, TkðtÞ .
as the thermodynamic temperature.

The question of sufficient sampling – how long to run

a simulation – is difficult, as it depends on balancing

computational cost against the exact meaning of

‘sufficient’. As noted earlier, meaningful precision can

be attained with a ten-fold excess of data [104]; however,

we may be unsure as to the characteristic timescale for a

process of interest (e.g. a conformational transition).

Assessment of simulation accuracy is yet more difficult,

largely due to the limited experimental options for cross-

validation. As an example of the type of data that may be

used for cross-validation, trajectory-derived RMSFs for

each residue in a protein can be compared with patterns of

variability from NMR order parameters (S 2) [180] or the

B-factors obtained from refinement against X-ray diffrac-

tion data.[181,182] The B-factor, also known as the

Debye–Waller factor,[183] quantifies the attenuation of

X-ray scattering intensity (Ið~hÞ) for each peak in a

diffraction pattern. Expressed in reciprocal (diffraction)

space, with ~h denoting the vector of Miller indices h; k; l
for each Bragg reflection, we have

Iexpð~hÞ ¼ I0ð~hÞ e22Bðsin2u=l 2Þ: ð10Þ

In this equation, Iexp is the measured experimental

intensity, I0 is that for the ideal (frozen) lattice with no

thermal vibration, B is the overall temperature factor, and

the sin2u=l2 term captures the standard decrease in the

magnitude of atomic form factors with increasing Bragg

angle (u) for a given X-ray wavelength (l). Alternatively,
individual B-factors can be expressed in terms of

individual/atomic motion, in real space, as follows:

Bi ¼ 8

3
p2 Dri

!			 			2
 �
; ð11Þ

where k· · ·l denotes the ensemble average and kjDri!jl2 is

the mean square coordinate displacement of atom i about

its equilibrium position. These equations, which take B-

factors as scalars, assume isotropic atomic displacements;

given sufficiently high-resolution diffraction data, full

anisotropic B-factor tensors can be used to better resolve

the atomic displacements.[183] Equations (10) and (11)

link an experimental observable, namely X-ray reflection

intensities, and a simulation-derived quantity, the RMSF

along the trajectory (Equation (7b) in Section 4.7.1).

However, in attempting to validate a simulation by

corroborating MD-derived RMSFs to patterns of variation

in crystallographic B-factors (high B-factors in loops,

active site residues, etc.), we should note two issues: (i) the

typical B-factor refinement approach assumes isotropic

and harmonic thermal motion and (ii) the B-factor values

generally computed in macromolecular X-ray refinement

implicitly include a host of additional, non-dynamical

effects. Issue (ii) is important because the mean atomic

displacement of a specific residue in a macromolecular

crystal arises from the authentic intra-molecular dynamics

of that residue, but also includes effects of static disorder

and microscopic heterogeneity (slight conformational

variability in each unit cell), lattice imperfections and

vibrations, and so on. Because both static and dynamic

phenomena contribute to the attenuation of X-ray
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reflection intensities, care must be taken when interpreting

B-factors in terms of specific dynamical processes.

Beyond the aforementioned issues, two main factors

limit the precision and accuracy of simulations. Firstly, the

approximations inherent in FFs, and the MM approach

itself, restrict the accuracy of trajectory-derived values, as

alluded to in Section 4.2–4.3. Second, the necessarily

limited sampling means that trajectory-derived numerical

averages may be insufficiently converged, there could be

many conformational transitions that occur in nature but

go unobserved in a limited-length trajectory and so on.

These two limitations – force-fields and statistical

sampling – have motivated many areas of contemporary

MD research. For instance, much recent work has been

devoted to creating polarisable FFs,[184,185] more

efficient ab initio and hybrid QM/MM approaches,[134]

enhanced sampling techniques [71] and so on. A thorough

discussion of the relative merits of various MD-based

approaches can be found in [47].

4.8 Simulations in structural biology

In addition to the utility of simulations in analysing

biomolecular dynamics and function (e.g. allostery), MD-

based methods are used in biology to determine the 3D

structures that serve as starting points for such analyses.

Perhaps nowhere has the practical impact of MD been

greater than in experimental structural biology, which is

largely concerned with determining structures via X-ray

crystallography or NMR spectroscopy. To illustrate the

power of leveraging MD with experiment, consider the

role of simulating annealing refinement. MD-based

simulated annealing is generally used in the refinement

of both crystallographic models [186] and in NMR

structure determination.[187] Simulated annealing refine-

ment works by using MD as a conformational search tool:

an artificial energy landscape is constructed by adding a

fictitious energy term to the FF, to penalise discrepancies

with diffraction data. Using MD, this landscape is initially

sampled at exceedingly high (physically unrealistic)

temperatures, thereby providing the system – in this

case, the trial 3D structural model – with enough thermal

energy to cross local energy barriers. Several stages of

short dynamics runs are performed, with the system

temperature lowered at each stage according to a

prescribed cooling schedule. The power of this approach

is that it generates successively better (lower energy)

structures as the simulation stages proceed at sequentially

lower temperatures, thereby refining the 3D structure.

Further details of this MD approach and its utility in

crystallography have been reviewed.[75]

This fruitful application of simulating annealing to

structural biology illustrates a general principle: because

of their generality, simulation-based approaches offer

flexible frameworks for handling experimental data (to get

to a 3D structure), integrating various types of data, and

then extracting knowledge that is inaccessible from such

data alone (e.g. dynamics of the 3D structure). An example

of the synergistic application of computation and

experiment is the determination of a structural model for

the nuclear pore complex (NPC), an <50–100MDa

assembly of hundreds of proteins and lipids (reviewed in

[1]). In the NPC work, many lines of experimental data

were taken as distance restraints and cast as energy terms

in a molecular mechanics framework.[188] This approach

enabled the application of energy minimisation and

simulated annealing routines to obtain a collection of

structures most compatible with the combined set of

experimental data (or least incompatible, in the sense of a

cost function). The success of the approach hinged on two

facts: (i) electron microscopy, chemical cross-linking,

mass spectrometry, and virtually any other source of low-

resolution data facilitates structure determination [1] by

constraining the allowed 3D structures and (ii) compu-

tational methods, such as the simulation-based methods of

this text, provide a way to sample the space of possible

solutions, via rapid generation and evaluation of trial

structures. Thus, computational methods provide a natural

framework for the development and implementation of

‘hybrid’ approaches for difficult/low-resolution structure

determination.

5. Computational docking as a means to explore

molecular interactions

Because of the pivotal roles of molecular dynamics and

interactions in vivo, many computational approaches have

arisen to model and elucidate these interactions in silico.

The many different types of molecules (proteins, nucleic

acids, small molecules, etc.) found inside even the simplest

of cells means that an even far greater number of

conceivable types of interactions can occur in cellular

physiology.[5] Such interactions are often pairwise, AzB,
where if A ¼ B (and the constituents are protein) the

interaction is termed homotypic (e.g. homo-oligomers

such as an ATPase), whereas for A – B the interaction is

called heterotypic (e.g. a hetero-dimer protein, oxygen

bound to haemoglobin). Most generally, the interaction

partners A and B may be protein, nucleic acid,

carbohydrate, lipid, or any of a number of other small

molecules and ions (the haem ring in haemoglobin, ATP-

binding sites, etc.). The binary AzB complex may be short-

or long-lived with respect to the lifetime of the cell, and the

AzB association may be thermodynamically quite stable (e.

g. cytoskeletal polymers [189]) or only marginally so (e.g.

entrapment of a polypeptide in the GroEL cage for folding

and release [190]). Finally, in addition to binary

interactions, ternary and higher-order contacts can occur,
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giving rise to intricate homo- or hetero-oligomeric

complexes and, in some instances, open-ended polymeric

structures such as the cytoskeletal ‘scaffolding’ proteins.

5.1 Physical chemistry of molecular associations

Apart from the role of macromolecular crowding [2] in

promoting interactions between any two random mol-

ecules A and B, note that a specific AzB complex will form

only once the entities A and B are within suitable distance

for energetically favourable inter-atomic interactions to

occur, denoted by A· · ·B. What is meant by ‘suitable

distance’? Recall from Sections 2 and 3 that non-covalent

forces originate in the laws of physics, and are of only a

few fundamental varieties: relatively long-range electro-

statics (Uelec,1=r), shorter-range hydrogen-bonding

interactions (fundamentally electrostatic, requires chemi-

cally complementary donor and acceptor), and even

shorter range vdW interactions (features attractive and

repulsive components). In addition, solvation and other

entropic effects play a major role in molecular interactions

[191–193]; these effects include the entropy-driven free

energy changes due to solvent reorganisation and

differential exposure of hydrophobic patches near the

AzB interface. In computing the affinity of an A· · ·B

contact, note that a possibly delicate balance of entropic

effects is at play: Taking A and B as rigid bodies, six

rotational and translational DoF are lost upon formation of

the complex (DSoA†B , 0, disfavouring association), while

the entropy change of solvent molecules liberated from the

AzB interface (DSosolv) will favour association. In one

common approach, the magnitude of DSosolv is taken to be

proportional to the solvent-accessible surface area that

becomes occluded in the AzB interface.[194] Though far

from straightforward, properly accounting for these subtle

entropic effects is necessary for accurate calculations of

ligand-binding free energies.[45,89,107]

Formation of an initial A· · ·B ‘encounter complex’

occurs via the diffusional association of A and B, followed

by possible smaller-scale intermolecular interactions and

intra-molecular rearrangements (induced fit) that finely

tune the stability of the complex. An alternative model of

ligand-binding mechanics is conformational selection,

[195–197] wherein the ligand B binds favourably to a

particular subset of conformers of A, ‘selected’ from the

full ensemble of thermally accessible states of A under the

given conditions. Features of both the induced fit and

conformational selection models are likely to occur in

many ligand-binding reactions.[198] For both models, the

molecular interactions are precisely the sorts of non-

bonded forces listed earlier and in Section 3.2, and are

what we attempt to correctly capture for accurate protein–

ligand docking. Hydrodynamics and its associated

methods, such as Brownian dynamics simulations, provide

the theoretical and computational framework for studies of

diffusional association and dissociation of A· · ·B over

cellular length-scales (< tens of nm) and timescales

(ms ! ms).[119,199] These length and time regimes

generally exceed what is possible, in terms of both

algorithmic frameworks and computational resources, for

studying the fine-grained (atomic-level) details of A· · ·B

interactions – for instance, elucidating specific hydrogen

bonds between a patch of conserved amino acids on A and

a structurally complementary region of B, the open

$ close dynamics of a hydrophobic trench on the surface

of A, etc. These two problems of (i) long-distance, long-

time diffusional association of A and B and (ii) short-

distance, short-time details of interactions between A and

B (and molecular dynamics of the resultant AzB complex)

are essentially handled as separate issues in current

computational studies, rather than treated in an integrated

manner. The remainder of this section focuses on methods

to study P· · ·L and P· · ·P interactions, where one entity is

protein (P; also termed the receptor) and the other

component may be a small-molecule compound known as

the ligand (L).

In principle, the computational approaches developed

to treat receptor· · ·ligand interactions can be generally

applied to any A· · ·B system, be it protein· · ·protein,

protein· · ·nucleic acid, nucleic acid· · ·ligand, etc. In

practice, the variations between these types of interactions

enable different sets of approximations and methods to be

applied to each. As with FFs and MM, the calculations are

numerically intensive, and simplifying estimations are

necessary to render the calculations feasible. For instance,

crude treatment of magnesium ions is unlikely to degrade

the overall results of a protein–ligand docking pipeline, as

magnesium plays a relatively rare role in mediating such

interactions in proteins; however, deficiencies in model-

ling Mg2þ would adversely affect RNA–ligand docking,

as many such interactions are magnesium-mediated

(polyvalent ions are a weakness in typical all-atom

classical MD simulations with non-polarisable FFs [200]).

Because protein· · ·ligand and protein· · ·protein docking

have been the most thoroughly studied, the remainder of

this section focuses on these two types of molecular

interactions.

5.2 Protein–ligand docking

5.2.1 General goals

Unlike the usage of MD to study the conformational

dynamics of a protein, the general goal of most protein–

ligand docking efforts is not to simulate the binding

process as it occurs in nature (a notable exception is Ref.

[16]). Rather, the aim is to predict and characterise

possible molecular complexes in terms of the 3D structure

of the ligand-binding site and the ligand itself (the pose),
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and possibly the ligand-binding energetics as well.[89]

(The standard state Gibbs free energy of binding is a

measure of equilibrium binding affinity via the usual

relationship DGo
bind ¼ 2RT lnKD.) After an initial round

of docking studies, we may wish to carefully dissect the

enthalpic and entropic components of binding,

DGo
bind ¼ DHo 2 TDSo, in order to use such information

to guide and refine the ligand design process. For instance,

decreasing the number of rotatable (single) bonds in a

candidate inhibitor compound will reduce its entropy loss

upon binding, thus enhancing the overall binding affinity

(all other things being equal).[201]

5.2.2 More specific goals

In planning a docking study, the precise objectives must be

carefully considered, as these goals dictate the allowable

approximations in the scoring method and the necessary

amount of sampling. Three scenarios can be envisaged. (1)

Is the goal to exhaustively characterise the binding of a

single compound L across the surface of a protein P? If so,
then extensive sampling across the entire protein surface

must be performed (‘blind-docking’ assumes no knowl-

edge of the location of potential ligand-binding sites), with

moderate approximations necessary for the scoring

function.[202] (2) Is the goal virtual screening (Box 5)

of large databases of compounds against protein P? If so,

then the degree of sampling will be necessarily quite

limited and more aggressive approaches for rapidly

generating trial configurations, such as genetic algorithms

or MC, must be employed, versus more physically realistic

(but costly) approaches such as MD simulation.[203]

Similarly, in this scenario a rapidly computable, heuristic

scoring function would be preferable to a more accurate,

but costly, physics-based FF. (3) Is the goal to predict the

activity of a family of related small molecules (say Ļ, L’, Ł,

L
ˆ
), at a particular binding site, in order to assess their value

as potential lead compounds for drug development? This

would require calculation of accurate binding free energies

to protein P (DGo
bind for PzL, PzL’, PzŁ, etc.). Similarly, a

related goal might be to predict the effects of point mutants

of P, either engineered or naturally occurring, on the

binding affinities for this set of compounds. This third

scenario is the most computationally demanding, as

accurate ligand-binding free energy calculations require

extensive configurational sampling and an accurate FF

representation of the physical interactions ([204] and

references therein).

5.2.3 Basic principles and approaches

Docking consists of two parts: (i) a sampling method to

general trial PzL structures (poses) and (ii) a scoring

system to evaluate a pose by assigning it a value that

Box 5. Concepts and terminology: docking

The following terminology often appears in the docking literature:

. CADD, SBDD: These acronyms are common in the docking literature and denote computer-aided drug design and

structure-based drug design; protein–ligand docking is a key step in most CADD workflows. A related concept is

HTS (high-throughput screening), which may be performed experimentally (via robotic automation) or

computationally (virtual screening of candidate drug compounds or other small ligands via in silico protein–

ligand docking pipelines).
. Receptor/ligand: In a binary interaction, PzL, the larger entity (typically a protein or nucleic acid) is known as the

receptor and the smaller molecule, such as a drug compound, is known as the ligand; analogous terms from

chemistry are host (receptor) and guest (ligand). In drug-design applications, ligands that bind a receptor and elicit

a positive response are known as agonists, whereas antagonists bind and inactivate receptors.
. Pose: The geometry or binding mode of a ligand in a receptor binding/active site is called a pose. The pose is

precisely described via (i) the usual six DoFs that specify the rigid-body location of the ligand in space (three

translational þ three orientational parameters, relative to the receptor) and (ii) the exact 3D structure

(conformation) of the receptor-bound ligand, in terms of its internal DoF. Typically, only torsion angles (1–4

interactions) for the ligand, and possibly for receptor residues lining the active site, need to be considered, as bond

lengths and angles do not significantly deviate from their standard reference values at physiological temperatures.
. Pharmacophore: A 3D model that defines, for a specific class of receptors, the important features of cognate

ligands. Distinct chemical regions of the ligand are described in terms of physicochemical properties, including the

relative contributions of each region and its associated properties to ligand-binding energetics and geometry. The

development of dynamical pharmacophores is a modern research direction that aims to transcend static models by

accounting for ligand flexibility, thereby improving pharmacophore-based methods for drug discovery and

modelling of dynamic molecular interactions.
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presumably reflects its accuracy. Note that this is

analogous to the basic approach in MD simulations,

where the equations of motion serve as a sampling method

(propagate the equations forward in time) and the FF

serves the role of a scoring function. The task of sampling

is also referred to as the ‘search’ problem in docking. The

aim of accurate scoring is related to the goal of computing

ligand-binding affinities. Modern docking research is

dedicated largely to the sampling and scoring problems.

[110] While many effective methodologies have been

developed, many limitations continue to hamper the usage

of docking in computer-aided drug design (CADD)

pipelines, in terms of efficiency (coverage – largely an

issue of sampling) and reliability (accuracy – largely an

issue of scoring functions). Further information on

docking principles and approaches, including lists of

software suites, have been reviewed in several places

([77,205–208]). After outlining the demands on a docking

method, the remainder of this section elaborates the two

problems of sampling and scoring.

The demands. How we approach the sampling and

scoring problems, e.g. what level of approximation is

permissible, is dictated by the demands we make of a

docking method for a specific application. For instance,

the docking method used in a CADD pipeline will

necessarily be cruder (computationally cheaper, per

compound) than the techniques used in a careful study

of binding energetics (using, for instance, free-energy

perturbation calculations on a small set of ligand

compounds). The demands of most docking applications

occupy one of three levels: (i) At the crudest level, a

docking study may simply aim to identify active ligands

from a library of candidate compounds, even if the

predicted PzL structure for that compound is incorrect or

there are minor inaccuracies in the pose. Here, ‘active’ is

taken to mean high-affinity binding (sub-mM), though in

principle it simply means bio-active, irrespective of

in vitro binding strength. In this context, experimental

binding data from high-throughput screening can help

cross-validate docking results, thereby improving the

overall accuracy of the docking study. (ii) At a more

demanding level, the docking approach will identify the

‘true’ ligand by discriminating it from a pool of inactive

compounds and will also correctly predict the pose of this

ligand in the binding site. At this level, crystallographic or

NMR structures of the PzL complex (or a close analogue

PzL0) provide a means of validation that can also be used to

refine the ligand design. (iii) At the highest level of

stringency, a docking method will successfully identify

true binders, correctly predict the PzL structure, and

accurately estimate DGo
bind. At present, this level (iii) is not

computationally feasible as part of a high-throughput

pipeline because accurate free energy calculations require

both extensive configurational sampling and an accurate

scoring system, in the form of a physics-based FF that can

account for binding-associated changes in entropy of the

ligand and receptor, solvation effects and so on [207].

Sampling. A docking search method is used to sample

configurational space as efficiently as possible, thereby

generating many PzL structures for scoring and ranking. To

achieve this, three sets of issues must be considered: (i) the

sampling algorithm, (ii) how molecular flexibility is

treated and (iii) whether the docking will be blind

(unknown binding site) or focused on a particular region of

the receptor (a known or suspected binding site). The

challenge is clearly much greater in blind versus focused

docking: as shown in Figure 6, a blind docking study must

consider the entire solvent-accessible surface of the

receptor in order to avoid false negatives, whereas in

focused docking more extensive sampling, and therefore

better docking, is possible because the same computational

resources can be focused on a more limited spatial domain

(finer grids, more exhaustive sampling of trial poses, cf.

Figure 6(A),(B)). In the absence of high-resolution

structural information, lower-resolution experimental

data, such as from chemical cross-linking, can greatly

aid a docking study by enabling a focused calculation

instead of blind docking. Determining the site for a

focused docking study can be accomplished manually or

by more automated methods, including MD simulations of

the target protein with small probe molecules to identify

binding sites.[203]

Of the four possibilities for treating ligand and protein

flexibility, {L, P} £ {flexible, rigid}, virtually all current

software suites treat the small-molecule L as flexible

Figure 6. (Colour online) Protein–ligand docking in action: a
computed grid. Many protein–ligand docking algorithms employ
a discrete spatial grid over which the calculation is performed, as
explicitly shown here. In this example, the receptor is the ABL2
tyrosine kinase and the ligand is the inhibitory compound imatinib
(see also Figure 1(C)). Coarse grids were used for ‘blind’ docking
over the entire receptor (A), while finer grids could be applied for
more ‘focused’ docking centred on the (known) ligand-binding
site (B). Docking grids were computed using AUTODOCK, and the
illustration was created and rendered in PyMOL.
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(rotatable single bonds), while some packages allow for

partial inclusion of protein flexibility,[77] e.g. by

considering only a subset of residues centred near the

presumptive binding site (the yellow receptor side chains

in Figure 6(B)). Given today’s computing power and

docking algorithms, what can be achieved lies between the

two extremes: a rigid-L/rigid-P treatment is unnecessarily

crude and inaccurate, but flexible-L/flexible-P is not yet

routinely feasible (in the sense of a fully flexible protein,

including all side-chains and backbone).

The type of sampling algorithm (issue (i)) and the

treatment of flexibility (issue (ii)) are closely intertwined.

Docking codes typically take one of three approaches to

sampling: (a) systematic, (b) stochastic or (c) simulation-

based. Systematic methods pursue a brute-force calculation,

wherein the geometric parameters of interest are system-

atically varied across all possible values of those DoFs. For

example, if we are interested in torsion angles 1, 2 and 5 of L,

thenwemight sample each of those torsion angles across the

full angular range in increments of 58. Even this

unrealistically simple case yields ð360=5Þ3 ¼ 373; 248
combinations of parameter values to evaluate in the scoring

function. Moreover, the previous figure severely under-

estimates the true number of potentially important DoFs:

three translational and three rotational DoF describe the

rigid-body location and orientation of L with respect to P

(these must be sampled with some reasonable granularity),

and the number of torsional DoF in P dwarfs the above-

mentioned estimate for L. This combinatorial explosion in

the dimensionality of the search space grows geometrically

with the number of DoF and severely limits the general

effectiveness of systematic sampling approaches. For these

reasons, most docking codes utilise stochastic search

methods such as MC sampling, genetic algorithms, or

‘tabu’ search (these methods are described in

[206,207,209]). An example of a simulation-based strategy

would be to use MD-based simulated annealing to generate

trial poses; an advantage of simulation approaches is that

they offer a natural way to incorporate molecular flexibility

in the docking calculation, but a disadvantage is the

computational cost required for atomistic simulations to

cross high-energy barriers and achieve reasonable sampling.

Because of the difficulties of the search problem, many

alternative sampling strategies have evolved. Most of these

schemes incorporate a stochastic or simulation-based

algorithm as a central routine. Examples for sampling the

space of possible ligands/poses include incremental ‘frag-

ment-growth’ methods [210] and database methods

(libraries of pre-generated conformers that can be manipu-

lated [211]). Examples of alternative approaches to treat

receptor dynamics include the usage of protein side-chain

rotamer libraries, protein ensemble grids and so on (see

reviews cited earlier).

Scoring. Reliable docking calculations require a robust

scoring system, wherein numerical values are assigned to

each of the candidate PzL complexes generated by the

sampling algorithm. These numerical values (or ‘scores’) are

often assumed to correspond to DGo
bind values, even when

such scores are more knowledge-based rather than physics-

based. Early docking codes [212] assigned scores based on

geometric fit/steric complementarity between P and L; such

an approach successfully captures the essence of apolar

interactions (and thereforeworkswith hydrophobic ligands),

but neglects potentially important effects such as electro-

static complementarity and the donor/acceptor directionality

of H-bonds.[201] As described in the remainder of this

section, modern scoring systems are either (i) FF-based, (ii)

empirically derived functions or (iii) knowledge-based.

FF-based scores adopt the MM approach (Sections 3.2

and 4.3), with physically motivated terms to model the

energetics of inter-atomic contacts between P· · ·L. In fact,

many FF-based scoring systems used in docking stem from

the transferable FFs developed over the years for MD

simulations (AMBER, CHARMM, etc.). While a disadvan-

tage of the FF-based scoring systems is that they are

computationally costly, compared with the other two types

of scoring approaches, an advantage is that their physical

basis permits us to manipulate the terms in a comprehen-

sible manner; for instance, we can ‘soften’ atomic

interactions by adjusting the repulsive wall of the

Lennard-Jones potential from r212 to r29.

The other two types of scoring systems, empirical and

knowledge based, are both statistical in nature. Empirical

scoring systems utilise simpler functional forms compared

with the FF approach, with parameters that are obtained by

fitting against experimentally determined binding affinities.

[213]A strength of this approach is that its simpler functional

forms are computationally cheaper to evaluate; a drawback is

that the nonbonded interaction terms, because they are

derived by statistical regression, could be physically rather

ad hoc (they may not be transferable to other classes of

ligands, the terms in the equation may be difficult to

troubleshoot as they do not correspond to physicochemical

properties and so on). Also, as with many statistical fitting

approaches, the parameters of the scoring system can be

inadvertently over-trained against the necessarily limited

data-sets from which they are derived, thus limiting the

transferability of the scoring approach.[214,215]

Knowledge-based scores derive an effective energy for

an inter-atomic interaction A· · ·B by computing the

statistical occurrence of this interaction (e.g. frequency

of A· · ·B pairs) in a large database of known 3D structures.

Implicit in this approach, which is based on the concept of

a PMF (Section 4.7.2), is the assumption that all of the

physics that might be relevant to an A· · ·B interaction is

implicitly contained as pairwise interactions in our

databases of known 3D structures.[216,217] As is the

case with empirical scores, knowledge-based scores are

rapidly evaluated because of their simple functional forms

and limited number of terms. In addition to the issue of
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transferability and other caveats about statistical poten-

tials, more subtle drawbacks to the knowledge-based

approach include its basis in the concept of a reference

state for the PMF (the reference state is a clear idea in the

thermodynamics of simple systems, but a less clear

concept when counting pairwise A· · ·B interactions in a

macromolecular complex). To make the calculation of

scores numerically tractable, the scoring functions of the

statistical potential are evaluated on a spatially discretised

grid. That is, the ligand is positioned at successive points

on a user-defined grid, possibly with sub-Å spacing

between grid points (Figure 6). Docking codes achieve

run-time efficiency by pre-computing these ‘atomic

affinity grids’, which specify, for each unique atom type,

the interaction between that atom and other atom types (as

may occur in the ligand). Such grids are computed for the

various non-bonded components of the potential energy

(e.g. Coulombic, vdW), and accelerate the overall

calculation by obviating the need to re-compute the grid

for each successive translation of the ligand across the

grid.[207]

The three scoring methodologies described earlier –

FF-based, empirically-derived and knowledge-based

potentials – serve as a starting point for several strategies

to enable more accurate scoring and ranking of docked

poses. For instance, the core idea in the ‘consensus

scoring’ approach is to combine for a single docking

calculation the results obtained by application of different

scoring schemes, parameters settings, etc., thus providing

a consensus score for each pose. If the underlying

inaccuracies of each scoring system are statistically

independent of one another (a major assumption), then any

such errors would cancel and the consensus score should

serve as a more accurate predictor by which to rank poses

in terms of binding affinities. In the ‘re-scoring’ strategy,

[218,219] the results from an initial docking calculation

(i.e. the poses, rank-ordered by score) are refined by

re-scoring the list of poses using a higher-accuracy (more

costly) scoring scheme, such as the MMPBSA approach.

The MMPBSA approach addresses the three chief

shortcomings of most scoring systems – entropies,

solvation, and electrostatics – by using a molecular

mechanics-based approach to estimate conformational

entropies (MM), a continuum treatment of electrostatics

via the Poisson-Boltzmann equation (PB), and surface area

terms (SA) to capture solvation effects. [220]

5.2.4 Software packages

The key idea in docking is to rapidly generate many PzL
trial structures and then evaluate each candidate using

scoring functions such as those described earlier. Most of

the variation between different docking packages stems

from differences in how they address the sampling and

scoring problems. The first general-purpose protein–

ligand docking code (DOCK) was developed by Kuntz and

co-workers at UCSF and released in the late 1970s.[221]

In the intervening 30 years, a multitude of approaches have

been developed and implemented as software suites that

are either freely or commercially available. Because many

heuristic approximations, empirical optimisations (par-

ameter-tuning), and other computational ‘shortcuts’ enter

these packages to make the calculations feasible, there can

be great variation in the performance of different programs

for different types of problems (e.g. blind vs. focused

docking), and with respect to different performance

metrics. For example, a major performance criterion, in

terms of sampling, is the treatment of flexibility. Virtually

all modern software packages treat ligands as flexible, but

until recently only few codes incorporated even partial

receptor flexibility as a way to better sample the space of

possible protein–ligand binding modes.[77] Because

software packages rapidly evolve and algorithms are

under continual development, the set of available docking

codes, and their speed, accuracy and other performance

metrics, are fast moving targets. Software suites are not

listed here, as compilations of some of the most prevalent

docking codes are available in the literature. For example,

Kitchen et al. [206] and Sousa et al. [207] provide tables of

docking programs, with the codes categorised by sampling

approach, scoring methodology, handling of receptor

flexibility and various other criteria.

5.3 Protein–protein docking

Most cellular processes are mediated by protein-based

assemblies,[5,222,223] such as protein folding chaper-

ones,[224] polymeric components that form cytoskeletons

[225] and ribonucleoproteins such as the ribosome.[115]

For simplicity, consider only protein–protein interactions,

and specifically the case of homotypic interactions of a

protein ‘P’ that assembles into oligomers of n subunits,Pn.

The monomer, P, may be non-functional, partly

functional, or it may exhibit some unique, alternative

function (apart from Pn). In any case, the precise

biochemical function of P, such as binding a specific

ligand signal, may be similar or dissimilar to the

physiological function of the full oligomer in vivo; if P
and Pn have similar biochemical properties, then the

oligomer may simply act by presenting multiple

interaction sites (a concept termed avidity). Most often

for self-associating proteins, the biologically functional

unit is the oligomeric assembly; it is this assembly which

supplies some vital biochemical function and is therefore

the evolutionarily conserved entity.[223] In such assem-

blies, head ! head association of subunits yields

complexes that are generally closed, whereas interactions

with head ! tail polarity can give either closed (cyclic)
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assemblies or open-ended ‘runaway’ structures (polymeric

fibrils in one dimension, sheets or layers in two

dimensions, and crystals in 3D [226]). In all such cases,

protein–protein docking can be applied.

Assume we know from experiments that well-defined

homomeric AzA or heteromeric AzB associations occur

in vitro. Such information is often accessible via analytical

ultracentrifugation, fluorescence resonance energy transfer

(FRET) spectroscopy or other solution-state biophysical

approaches.[227] Then, protein docking can help further

characterise these complexes by addressing some basic

questions: (i) Can a stable AzB complex be identified by the

docking methods (plural, if trying a consensus docking

approach)? (ii) If so, how many such distinct AzB binding

modes are there? For example, are there two or three distinct

binding patches, leading to variousAzBgeometries, or does a

singlegeometry recur as the tophits in thedocking trials? (iii)

What is the predicted binding affinity for the AzB complex?

How does this value comparewith that determined from, e.g.

isothermal titration calorimetry or surface plasmon reson-

ance measurements? Though not always straightforward,

such questions can be addressed via protein docking.

Methods for protein docking have evolved in parallel with

the protein–ligand field, albeit with a time-lag that is due, in

part, to the relative scarcity of 3D structural data on protein–

protein complexesversus protein–ligandcomplexes. Protein

docking facesmany of the same computational challenges as

protein–ligand docking, with two specific types of problems

taking on heightened significance in the protein–protein

case: (i) protein flexibility should be treated, at least at the

side-chain level, as numerous pairwise contacts between

side-chains define an AzB interface (the energetics of the

binding process is at least partly governed by the loss of

conformational entropy of these side-chains); (ii) the need to

accurately model solvation becomes even more pronounced

in protein docking, as desolvation of the interface is a major

determinant of the associationmechanism. Aswith protein–

ligand docking, many computational strategies have been

developed to address these questions; this active field has

been reviewed recently.[215,228]

Protein–protein docking has taken on renewed

relevance in this post-structural genomics era. We now

have 3D structures of many of the isolated components of

cellular complexes, but not the entire assemblies. Many

such assemblies are only transiently stable, making them

recalcitrant to structure determination via X-ray crystal-

lography or NMR spectroscopy. Efficacious protein–

protein docking, along with protein–nucleic acid and

protein–ligand docking, would provide a path towards

predicting the structures of such complexes and thereby

bridge the rapidly widening gap between our knowledge of

individual protein structures and the cellular-scale

structures into which they assemble.

6. Conclusions

The interior of a cell is crowdedwith biopolymers,molecular

assemblies and smallmolecules. This dense environment is a

highly dynamic network of molecular contacts (Figure 1

(A)), meaning that a full understanding of any cellular

pathway requires an accurate and detailed description of the

molecular dynamics within and between its components.

Though such interactions vary immensely in terms of

possible types (chemical groups), strengths (thermodynamic

stability) and lifetimes (kinetics), molecular simulations

provide a powerful approach. The atomic contacts that

mediate the binding of a small-molecule inhibitor to an

enzyme active site are of the same physical nature as the

contacts that stitch together the dozens of subunits in a

cellular-scale assembly such as the ribosome. The funda-

mental interactions are the same, only the chemical variety

and the number of pairwise (and higher-order) contacts

differs; these differences in molecular recognition give rise

to the variation we see in biological assemblies. The

difficulties in experimentally characterising the confor-

mational dynamics of biomolecular assemblies have driven

advances in simulation-based approaches, such as MD and

docking. The power of the simulation approach stems from

its origin in statistical mechanics, which links the

experimentally accessible macroscopic properties of a

system to the microscopic structure and dynamics of its

constituents. Indeed, the versatility of simulation-based

approaches is immense, as molecular simulations have been

applied to studies of (i) normal protein function (e.g.

allostery), (ii) protein malfunction (aggregation diseases,

mutations in metabolic diseases, etc.), (iii) protein structure

prediction, design and engineering (e.g. homology model-

ling), (iv) macromolecular structure determination via

crystallography, NMR and electron microscopy and (v)

structure-based drug design. The utility and applicability of

molecular simulations will only continue to grow with our

increasing knowledge of biological systems as highly

dynamic arrays of molecular interactions.
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