Supporting Information (S2 Text)

An Introduction to Programming for Bioscientists: A Python-based Primer

Berk Ekmekci*, Charles E. McAnany*, Cameron Mura*

Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319 USA; *cmura@muralab.org; *These authors contributed equally to this work.

March 26, 2016

Contents

1 Python in Broader Context: A Tool for Scientific Computing 1

2 An Overview of Bioinformatics Software 3

2.1 Sequence-level Bioinformatics ... 3
2.2 Structural Bioinformatics .. 4
2.3 Phylogenetics and Molecular Evolution 5
2.4 Omics-scale Data-processing ... 6
2.5 Informatics Workflow Management Systems 6
2.6 The Bio* Projects, and Where to Go Next 7

3 Sample Python Chapters 8

3.1 Working with Python: Interpreters, Shells, IDEs 8
3.2 Sample Introductory Topic: Chapter 2 on Variables 8
3.3 Sample Advanced Topic: Chapter 16 on Classes, Objects, OOP ... 10

References 17

1 Python and the Broader Scientific Computing Ecosystem

Programming languages can be loosely classified, based on various criteria, into distinct lineages or taxonomies. Imperative programming languages require the programmer to specify the detailed steps necessary for the program to run, including explicit instructions for modifying data. In an imperative program, the series of statements that comprise the program alter the runtime’s state in a predictable and fairly obvious manner; C and Fortran are examples of popular languages that are often used to program in an imperative manner. The Unix shells (bash, csh, etc.) are also examples of imperative languages: the user types commands one-by-one and the shell executes them in order as it receives them.
In contrast, *declarative* languages emphasize expressions rather than statements. The programmer specifies not the precise steps necessary to generate an answer, but rather expresses the answer directly in terms of the input to the program. For example, in the Prolog programming language, one defines a set of rules (like a system of algebraic equations) and then asks the interpreter if a certain input could satisfy those rules. The interpreter will either find a valid solution or prove that no solutions exist. Regular expressions specify a set of strings and the regex engine tries to match an input string with a given regex. *Functional* languages are declarative programming languages that consider programs to be functions that can be evaluated. As an example, the parallel pipelines in Python (PaPy) toolkit was written in Python, making extensive use of higher-order functions (e.g., `map`, `reduce`), anonymous or ‘lambda’ functions (see Chapter 13, Functions III), lazy (non-strict) evaluation as its dataflow model, and other elements of functional programming design [1]. Functional languages discourage, and in some cases prohibit, mutation. While \(x=x+1 \) is valid in most imperative languages (the value of \(x \) is incremented by one), many functional languages have no easy way to change a variable—the programmer would usually refer to \(x+1 \) when that value was needed.

A number of other programming paradigms can be defined, and many of them overlap. Python is considered a *multi-paradigm* language: it provides many of the tools used in functional programming, including a powerful list comprehension syntax, and it also allows the user to define functions as sequences of statements to be executed (the imperative style).

Regardless of the classification scheme, all programs are characterized by two essential features. As mentioned in the main text, these two characteristics are: (i) **algorithms** or, loosely, the ‘programming logic’, and (ii) **data structures**, or how data are represented/structured, whether they are mutable, etc. [2] Python treats these two features of a program as inseparable, thereby making it particularly well-suited to the object-oriented programming (OOP) paradigm. Indeed, literally everything is an object in Python.

Python has become an especially popular language in scientific computing largely because (i) its clean syntax and straightforward semantics make it a lucid and readily accessible first language in which to learn/extend/maintain code; (ii) as a language, Python is quite expressive [3, 4], and is inherently amenable to modern programming paradigms such as OOP and functional programming [5]; (iii) Python’s widespread popularity has translated into the development of a rich variety of libraries and third-party toolkits that extend the functionality of the core language into every biological domain, including sequence- and structure-based bioinformatics (e.g., BioPython [6]), comparative genomics (e.g., PyCogent [7]), molecular visualization and modelling toolkits (e.g., PyMOL [8], MMTK [9]), ‘omics’ data-analysis, data processing pipelines and workflow management systems (e.g., [1]), and even parallel programming [10]. Many of these points are further elucidated in [11].

Several languages other than Python have been widely used in the biosciences; see, e.g., [3] for a comparative analysis. The R programming language provides rich functionality for statistical analysis, and has been widely adopted in bioinformatics (e.g., the Bioconductor project [12]). Perl became an early mainstay in bioinformatics programming (e.g., [13, 14]) largely because of its string-processing capabilities (pattern matching, regular expression handling, etc.). The Fortran, C, and C++ languages offer excellent numerical performance with minimal overhead, making them ubiquitous in computationally-intensive tasks such as molecular dynamics (MD) simulation engines; however, these languages require greater care in memory management and other low-level aspects of writing code, versus higher-level languages such as Python or Perl. The D programming language provides performance near that of C, with many convenient language features for high-level programming; however, the resulting language is complex. Though not a suitable tool for numerical computing, Unix shells (bash, csh, zsh, etc. [15]) are often used to link together other standalone programs (shell scripts, Python code, binary executables, etc.) into ad hoc data-processing pipelines.
2 A Glimpse of the Bioinformatics Software Landscape

There is a vast array of possible options and starting points for software resources in bioinformatics (and, more generally, computational biology), even if we limit our consideration to software that (i) is freely distributed under an open-source license and (ii) provides low-level libraries or modular toolkits†, rather than feature-complete end-products intended for general purpose usage (including by novices). Monolithic, ‘all-in-one’ software suites typically have many external dependencies, and these dependencies generally correspond to low-level libraries; an example from crystallographic computing is the usage of mmdb, Clipper, and various general-purpose graphics libraries (e.g., OpenGL) to achieve the high-level functionality of the popular Coot molecular graphics program [16].

We can only scratch the surface of available software packages, and the subsections that appear below cover but a handful of the programs often encountered in computational biology. The discussion is intentionally biased towards software written in Python, purely for the pedagogical purposes of this primer. Note that the material which appears below is inherently a moving target (and a fast one, at that). It is not uncommon for scientific software projects and databases to be in various states of flux (see, e.g., the editorial in [17])—new packages appear every few weeks, others disappear or become obsolete, and most software codebases undergo extensive modification on the timescale of months. For these reasons, the material in the following subsections strives to point the reader to various lists and meta-lists (lists of lists). Such lists are often more stably persistent (e.g., curated on Wikipedia), and they are inherently able to provide more recently updated catalogs of software than can be provided here. Ultimately, a web-search is often the most effective strategy to discover new information, troubleshoot software, ask programming questions, etc.

The remainder of this section is arranged as subsections based on the following major categories: (i) Sequence-level bioinformatics, (ii) Structural bioinformatics, (iii) Phylogenetics and molecular evolution, (iv) Omics-scale data-processing, (v) Informatics workflow management systems, and (vi) The Bio* projects (and some assorted tips). These categories are the common domains of activity in computational biology, both in terms of software development and practical applications. Within each section we offer pointers to online resources that catalog, in an at least somewhat structured way, some of the codes that exist in that application domain; such information often appears as lists and meta-lists.

2.1 Sequence-level Bioinformatics

This section’s content includes: (i) pointers to lists of available sequence analysis software packages that are mostly feature-rich, meaning they can be applied as-is to address a production-grade research task; (ii) an example of an educational piece of software (‘B.A.B.A.’) that covers the dynamic programming algorithm, found in many bioinformatics software packages; and (iii) practical advice on locating more detailed information and resources, for Python coding and beyond.

- **Lists of software**: An extensive list of sequence alignment codes is at [18]. A wiki is an ideal format for maintaining oft-changing lists of software, as the information can be readily updated by developers, users, and other members of the scientific community. The wiki content cited above is structured by type of application (pairwise sequence alignment, multiple sequence alignment, sequence motif detection, etc.), and a major subsection is dedicated to software for visualization of alignments [19]. Also, a closely related list is at [20], which supplies some programming tools (typically lower-level than the previous two cited URLs) for statistical computing, of the sort that often factors into sequence

†Software can be described as a low-level library or toolkit if it provides a generic, modular, and reusable set of functions (e.g., a PDB file parser), independent of specific application domains or highly specific instances of tasks (e.g., splitting a PDB file by chain identifier and writing each chain as a separate file); see also §1 of the main text for more discussion of the terms ‘low-level’ and ‘high-level’.
alignment methods. For instance, this latter list describes the software ‘Orange’ as “an open source machine learning and data mining software (written in Python). It has a visual programming front-end for explorative data analysis and visualization, and can also be used as a Python library.” Many of the software packages in the above list are open-source, meaning that one can freely access and study the code in order to identify useful chunks of code; these modular units of code can be adapted and re-used for one’s own purposes.

• **An educational code: B.A.B.A.:** Though written as a Java applet rather than as Python source code, we mention the ‘Basic-Algorithms-of-Bioinformatics Applet’ (B.A.B.A.; [21]) because of its pedagogical value in learning the dynamic programming algorithm that underlies many sequence-based methods [22]. Given a user-specified input problem (e.g., two sequence strings to align), the B.A.B.A. applet visually builds the dynamic programming matrix. Users can watch the matrix elements be updated as the algorithm progresses, including for such methods as the Needleman-Wunsch algorithm (globally optimal sequence alignment [23]), the Smith-Waterman method (local sequence alignment [24]) at the heart of the BLAST search method, and the Nussinov algorithm (for prediction of RNA secondary structural regions [25]). Using a tool like B.A.B.A., one can learn the dynamic programming algorithm and play with toy-models in preparation for implementing one’s own code in Python.

• **Further resources for coding:** For the hands-on activity of actually implementing an algorithm in Python, the most effective and general path to helpful information is a web search, e.g. using Google. By searching the web, one can discover, for instance, valuable and comprehensive discussions of the ‘bottom-up’ (exhaustive tabulation) and ‘top-down’ (recursion, memoization) approaches to dynamic programming (see, e.g., [26], [27], and [28]). This same advice holds true for any algorithm or data structure that one is attempting to implement in Python: websites, and online communities of coders, are invaluable resources for both novice and seasoned programmers.

2.2 **Structural Bioinformatics**

Both types of software resources for structural bioinformatics—(i) feature-rich suites that can be immediately applied to a research task and (ii) lower-level Python libraries that are intended more as modules to incorporate into one’s own code—can be discovered and used via similar strategies as mentioned above. Namely, we suggest a combination of (i) web-search, (ii) consulting lists of software on various wikis and other websites (curated sites are particularly helpful), and (iii) inspection of existing code from open-source packages. Some more specific notes follow:

• **Structure alignment/analysis:** As an example of a frequent computational task in structural bioinformatics, consider the comparison of two (or more) 3D structures. There are many available packages for optimal pairwise superimposition of two protein structures; the multiple alignment problem is more difficult (and fewer software solutions exist). Many of the available structural alignment packages are tabulated at [29] and, as of this writing, that web resource offers good coverage of existing packages. To visualize the results of structure alignment calculations, one can find numerous possibilities in such lists as [30] and Table 1 of [31].

• **Python-centric suites:** There are many feature-rich, research-grade software suites available for structural analysis tasks (in many cases, these programs also provide advanced visualization capabilities). Several such programs provide a Python API, or a built-in scripting language or shell that resembles Python’s syntax. Examples include the Python-based molecular viewing environment PMV [32], the popular PyMOL molecular graphic program [8], and the macromolecular modelling toolkit (MMTK; [9]). PMV supplies extensive functionality for protein structural analysis, with an
emphasis on geometric characteristics (surface curvature, shape properties, etc.). MMTK is “an open-source program library for molecular simulation applications”, and it provides users with a vast array of Python-based tools. Using MMTK’s Python bindings, one can write Python scripts to perform a coarse-grained normal mode calculation for a protein, a simple molecular dynamics (MD) simulation, or molecular surface calculations as part of a broader analysis pipeline.

- **Molecular simulations**: Another type of activity in structural bioinformatics entails molecular modeling and simulation, ranging from simple energy minimization to MD simulations, Monte Carlo sampling, etc. Software packages that are suitable for these purposes are tabulated at [33]. The Bahar lab’s ‘ProDy’ software is an example of a package in this scientific domain that makes substantial use of Python [34]. This “free and open-source Python package for protein structural dynamics analysis” is “designed as a flexible and responsive API suitable for [...] application development”; this code provides much functionality for principal component analysis and normal mode calculations.

- **Pure Python**: Finally, note that the purely Python-based SciPy toolkit supplies many types of computational geometry utilities that are useful in analyzing macromolecular 3D structures [35]. For instance, the Python module on spatial data structures and algorithms (scipy.spatial [36]) can compute Delaunay triangulations (and, inversely, Voronoi diagrams) and convex hulls of a point-set; this module also supplies data structures, such as kD-trees, that are indispensable in the geometric analysis of proteins and other shapes.

2.3 Phylogenetics and Molecular Evolution

This section describes software resources for computational phylogenetics, a major goal of which is the calculation of phylogenetic trees that accurately capture the likely evolutionary history of the entities under consideration (be they protein sequences, genes, entire genomes, etc.).

- **Wikipedia’s list of phylogenetics packages** is quite well-developed [37]. Also, a long-time pioneer of the field, J. Felsenstein, maintains a thoroughly curated list of several hundreds of phylogeny-related software packages at [38]. Notably, the software cataloged at this resource can be listed by methodology (general-purpose packages, codes for maximum likelihood methods, Bayesian inference, comparative analysis of trees, etc.); also, that URL provides a list of pointers to other lists. Many of the phylogeny packages listed on the above web-pages are feature-complete and ready for direct application to a research problem (perhaps in a Python script, depending on the package and its API), while others are libraries that serve as sources of lower-level functionality.

- **PyCogent**: The comparative genomics toolkit, PyCogent, is an example of a Python-based code in the evolutionary genomics domain. This software package supplies “a fully integrated and thoroughly tested framework for novel probabilistic analyses of biological sequences, devising workflows, etc.” [7]. As a concrete example of the benefits of the open-source approach, low-level Python functionality for protein 3D structural analysis was added to PyCogent by third-party developers [39], thereby expanding the scope of this (largely sequence-based) code to include structural approaches to molecular phylogenetics.

- **DendroPy**: A “Python library for phylogenetic computing”, DendroPy is a codebase that provides “classes and functions for the simulation, processing, and manipulation of phylogenetic trees and character matrices”. It also “supports the reading and writing of phylogenetic data in a range of formats, such as NEXUS, NEWICK, NeXML, Phylib, FASTA, etc.” [40] DendroPy is described by its authors as being able to “function as a stand-alone library for phylogenetics, a component of more complex multi-library phyloinformatic pipelines, or as a scripting ‘glue’ that assembles and
drives such pipelines.” This statement perfectly captures the essence of a well-engineered, extensible, open-source scientific software tool, which encourages modularity and code re-use.

• Finally, as an efficient, Python-based approach to developing one’s own code in the area of phylogenetics and molecular evolution, the wide-ranging BioPython project (see below) now includes a Bio.Phylo module. This module is described in [41] as supplying “a unified toolkit for processing, analyzing and visualizing phylogenetic trees in BioPython.”

2.4 Omics-scale Data-processing

The term omics refers to the acquisition, analysis, and integration of biological data on a system-wide scale. Such studies have been enabled by the development and application of high-throughput next-generation technologies. Specific sub-fields include, in roughly chronological order of their development, genomics, proteomics, metabolomics, transcriptomics, and a panoply of other new omics (interactomics, connectomics, etc.); the term NGS (next-gen sequencing) is closely associated with many of these endeavors. As would be expected, the volume and heterogeneity of data collected on the omics scale present many computing challenges, in terms of both basic algorithms as well as the high-performance software requirements for practical data-processing scenarios. These challenges are largely responsible for spurring the development of many open-source libraries and software packages. Berger et al. [42] recently presented an authoritative review of many computational tools for analyzing omics-scale data, including tables of available software packages sorted by helpful criteria (type of task, type of algorithm). For instance, the review describes potential solutions for data-processing pipelines for transcriptomics data, as obtained from RNA-seq or microarray experiments. An example of an omics-scale software package written chiefly in Python is ‘Omics Pipe’ [43].

Historically, much of the statistical computing tools that can be used in omics-style bioinformatics has been developed in the R language (see, e.g., the Bioconductor project). A low-level interface between Python and R is available—namely, the RPy package and its recent successor (rpy2) enable the use of R code as a module in Python. As a concrete example of a ‘cross-language’, integrated omics approach, note that microarray datasets can be processed using established R tools, followed by seamless analysis in Python (via hierarchical clustering) to obtain heat-maps and the corresponding dendrograms [44].

2.5 Informatics Workflow Management Systems

A bioinformatics research project is an inherently computationally-intensive pursuit, often entailing complex workflows of data production or aggregation, statistical processing, and analysis. The data-processing logic, which fundamentally consists of chained transformations of data, can be represented as a workflow. Several workflow management systems (WMS) have been developed in recent years, in biology and beyond, with the goal of providing robust solutions for data processing, analysis, and provenancing†. Available libraries and toolkits enable users to create and execute custom data-processing pipelines (in Python), and feature-rich software frameworks also exist. As mentioned in this section (below), some lightweight, production-grade solutions are written entirely in Python.

WMS software is well-suited to the computational and informatics demands that accompany virtually any major data-processing task. A WMS software suite provides the functional components to enable one to create custom data-processing pipelines, and then deploy (enact) these pipelines on either local or distributed compute resources (in the cloud, on an e-science grid, etc.). A WMS can be a high-level, feature-rich, domain-independent software suite (e.g., Taverna [45], KNIME [46]), or a lightweight library that exposes

†Loosely, data provenance involves carefully logging results (and errors, exceptions, etc.), ensuring reproducibility of workflows by automatically recording run-time parameters, and so on.
modular software components to users (e.g., PaPy [1]). Usage of a WMS is roughly similar in spirit to using, say, a series of low-level Unix scripts as wrappers for data-processing tools; however, compared to the one-off scripting approach, most WMS solutions feature greater flexibility and extensibility, enhanced robustness, and are generally applicable in more than one scientific domain. WMS suites that are often employed in bioinformatics are described, including literature references and software reviews, in an article that reports the creation of a lightweight Python library known as PaPy [1]. PaPy is a purely Python-based tool that enables users to create and execute modular data-processing pipelines, using the functional programming and flow-based programming paradigms. Alongside the PaPy toolkit, other Python-based WMS solutions include Ruffus [47] and Omics Pipe [43].

2.6 The Bio* Projects, and Where to Go Next

This final section lists the many available ‘Bio*’ projects, where the ‘*’ wildcard is a placeholder for a particular programming language; typically, the language at the core of a given Bio* project has seen sufficiently widespread usage in computational biology to warrant the concerted development of general-purpose libraries in that language; notable examples are the the BioPython and BioPerl projects. The table below provides a sampling of these projects, which are cataloged more thoroughly at the Open Bioinformatics Foundation [48]. The table is followed by a few assorted tips and pointers to aid in the discovery of additional resources.

Table S1: The Bio* projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Description (from each respective website)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioPython</td>
<td>“Biopython is a set of freely available tools for biological computation written in Python by an international team of developers. It is a distributed collaborative effort to develop Python libraries and applications which address the needs of current and future work in bioinformatics.”</td>
</tr>
<tr>
<td>BioPerl</td>
<td>“a community effort to produce Perl code which is useful in biology”</td>
</tr>
<tr>
<td>BioJava</td>
<td>“BioJava is an open-source project dedicated to providing a Java framework for processing biological data. It provides analytical and statistical routines, parsers for common file formats and allows the manipulation of sequences and 3D structures. The goal of the biojava project is to facilitate rapid application development for bioinformatics.”</td>
</tr>
<tr>
<td>BioSQL</td>
<td>“BioSQL is a generic relational model covering sequences, features, sequence and feature annotation, a reference taxonomy, and ontologies (or controlled vocabularies).”</td>
</tr>
<tr>
<td>BioRuby</td>
<td>“Open source bioinformatics library for Ruby”</td>
</tr>
</tbody>
</table>

We conclude by noting the following potentially useful resources:

- Wikipedia’s top-level page on bioinformatics software, organized by categories, is at [52]. At a similar level of detail, there exist open-access journals that will be of interest (e.g., *Algorithms for Molecular Biology*); also, *PLOS Computational Biology* publishes new contributions in a dedicated ‘Software Collection’ [53].

- The bioinformatics.org site [54] includes a list of hundreds of packages for bioinformatics software development; brief annotations for many of these packages are available at a related URL [55]. In addition, ref [56] lists software for Linux, sorted by categories. One can search for ‘python’ on that page, and will find numerous codes of potential interest.

- Another useful online search strategy is to query PyPI, the Python Package Index [57]. Searching PyPI with terms such as ‘bioinformatics’ will retrieve numerous potentially useful hits (a beneficial feature of this approach is that the returned codes are likely to be under active, or at least recent, development).
3 Supplemental Chapters of Python Code: Two Samples

In addition to the examples of Python code in the main text, a suite of Supplemental Chapters is provided with this work. These freely-available Chapters cover the topics enumerated in Table 1 (main text), and the latest source files are maintained at http://p4b.muralab.org. Each Chapter is written as a Python file—i.e., each Chapter is a plaintext .py file that can be read, executed, modified, etc. as would any ordinary Python source code. For pedagogical purposes, each Chapter is heavily annotated with explanatory material. These explanations take the form of comments in the Python code (lines that begin with a pound sign, ‘#’), thereby allowing the Chapters to be both descriptive and executable. The remainder of this section consists of two sample chapters, following a brief subsection that describes some practicalities of interacting with Python in a Unix shell environment. (Python is cross-platform, and various Python interpreters are freely available on the Windows and Apple OS X operating systems too.)

3.1 The Python Interpreter, the Unix Shell, and IDEs

Virtually all modern Linux distributions include a recent version of Python. One can begin an interactive Python session by accessing the interpreter (see §1 of the main text for more on this term). This, in turn, can be achieved by opening a Unix shell (terminal) and typing the standard command python. (On systems with multiple versions of Python installed [not an uncommon scenario], the command python3 may be necessary—one should experiment with this on one’s own Linux system.) As a concrete example, if the first Supplemental Chapter on control flow (the file ch05controlFlowI.py) is present in the current working directory, then its contents can be imported into an interactive Python session by issuing the statement import ch05controlFlowI (note the missing ‘.py’ suffix) at the Python prompt. The default Python prompt is indicated by three greater-than signs (>>>); for line continuation, the prompt appears as three periods (...). There are alternatives to the default Python interpreter, such as the freely-available IPython command shell [58]. In IPython, one can ‘load’ this file by typing either import ch05controlFlowI (as above) or else run ch05controlFlowI.py (note the file extension). Another Python interpreter (and source code editor) is IDLE. This integrated development environment (IDE) for Python is fairly straightforward to use, and IDLE is bundled with all standard, freely available distributions of Python. IDLE provides an interactive session and a simple file editor for creating Python source code. The Supplemental Chapters are simple text files that can be loaded into the IDLE editor and executed. Beyond the popular IPython and IDLE, other options for Python IDEs also exist. For instance, many users on the Windows OS use the Anaconda Python distribution, which is packaged with a large number of scientific computing extensions already pre-configured [59].

3.2 A Sample Chapter at a Basic Level: Variables [Chap 2]

The following code is Supplemental Chapter ch02variables.py, which is an introductory-level treatment of variables.

```python
# Chapter 2: Using variables.
# We can tell Python to remember the result of a calculation, by storing it
# in a variable. The syntax is
```

Ekmekci, McAnany, Mura
#variableName = calculation

Here, let me make a variable to store seven times seven.
def sevSqu():
 sevenSquared = 7 * 7
 # I can now use sevenSquared anywhere in this function.
 print(sevenSquared)

#Rules for variables:
Variables must start with a letter or underscore. After that, any combination
of numbers and letters is OK. These are some good variable names:
value1
fooBar
juice_concentration_2
But these are not valid variables.
1stValue (starts with a number)
let me in (has spaces in it.)
IllI (technically valid, but I'll kill you if you use this.)

NOTA BENE:
Variables in python are case sensitive!
aNumber is a totally different variable than aNumber. This can lead to very
subtle bugs. So:
Use consistent naming schemes. I will almost always capitalize the first
letter of each word in my variables, except the first one. My variables
might be:
aLittleBit
numberOfRottenBananas
counter (only one word, so no capitals.)
(programmers refer to this capitalization scheme as camel casing.)

#Some variable use:
def onePlusMe():
 number = 5
 number = number + 1
 print(number)

When python sees this, here's what it will do.
1. it sees that you're assigning a variable.
2. it calculates the value you're going to assign. Here, it's number + 1
3. it sets number to that value.
So remember, = is NOT a question. It's an instruction.
In a mathematics course, if you were told that x=x+1, your initial
response might be along the lines of "no it isn't", and rightly so!
In Python, it means "Calculate number + 1. Number is now that value."

#Here's a program to convert temperatures from Celsius to Fahrenheit.
def celsToFahr():
 celsiusTemperature = 30
 fahrenheitTemperature = 9/5 * celsiusTemperature + 32
 print("
 # Print is a very strange function, in that it can take many arguments
 # (separated by commas). For now, know that it will glue the arguments
 # together and print the whole thing.

 #For some of the programs you'll write, you need to look at the characters
 # in strings. I'll cover the syntax in greater detail is CH08, collections I,
 # but for now I'll just give you some useful syntax for strings:
 #To read the kth character of a string, you say stringName[k-1]
 #Most of the time, you'll just need the first character, which we can
 # extract with stringName[0]

def stringManip():
 initialString = "aoeu"
 print("the string starts with ", initialString[0])
 # We could get the third character like this:
 print("The third character is ", initialString[2])
82 # It's 2, not 3, because we use k-1 for the number, not k.
83 #(the reason becomes much clearer in CH08)
84
85 # Good? Good.
86
87 ###
88 ## Exercises ##
89 ###
90 # 1. Write the temperature program to convert a Fahrenheit temperature to
91 # a celsius one. What is the celsius temperature when it is 100 F?
92 # Reminder: Celsius = 5/9 (Fahrenheit - 32)
93 def fahrToCels():
94 pass # again, delete the pass, replace this function with your code.
95
96 # 2. Track the value of each of the following variables during this program.
97 # Just fill out the table with the values as they change.
98 # (don't run the code, do it by hand.)
99 def exercise2():
100 a = 1 # 1 | ? | ? #
101 b = 1 # 1 | 1 | ? #
102 c = 1 # 1 | 1 | 1 #
103 a = b + c # 2 | 1 | 1 #
104 b = a + c # 2 | | #
105 c = b + a # | | #
106 b = c # | 5 #
107 a = a + b # | | #
108 c = c + c # 7 | 5 | #
109
110 # 3. Print the first three characters of the specified string:
111 def printChars():
112 someChars = "aoeuhtns"
113
3.3 A Sample Chapter at a More Advanced Level: Classes & Objects, II [Chap 16]

The following code is Supplemental Chapter ch16ClassesObjectsII.py, which is a more advanced presentation of classes, objects, and object-oriented programming.

```python
class RationalNumber:
    ""
    A class that implements a rational number and the necessary
    arithmetic operations on it.""
    def __init__(self, numerator, denominator):
        """Arguments should be numbers or RationalNumbers, and will
        be the values of this rational number's numerator and denominator.""
```

Ekmekci, McAnany, Mura 10 of 19
if(isinstance(numerator, RationalNumber)):
 if(isinstance(denominator, RationalNumber)):
 # The constructor was called with RationalNumbers
 self._n = numerator._n * denominator._d
 self._d = denominator._n * numerator._d
 else:
 # The numerator, but not denominator, is a RationalNumber
 self._n = numerator._n
 self._d = denominator* numerator._d
else:
 # Both arguments are plain old numbers
 self._n = numerator
 self._d = denominator
 if(self._n != 0):
 self.reduceFraction()
 else:
 self._d = 1

def reduceFraction(self):
 gcd = greatestDivisor(self._n, self._d)
 self._n //= gcd
 self._d //= gcd

def add(self, otherNum):
 """Adds a rational number to this one, using the fact that
 a/b + c/d = (a*d + c*b)/(b*d)"""
 return RationalNumber(self._n*otherNum._d+otherNum._n*self._d, self._d*otherNum._d)

def subtract(self, otherNum):
 negOther = RationalNumber(-otherNum._n, otherNum._d)
 return self.add(negOther)

def mult(self, otherNum):
 return RationalNumber(self._n * otherNum._n, self._d * otherNum._d)

def divide(self, otherNum):
 return RationalNumber(self._n * otherNum._n, self._d + otherNum._n)

def __str__(self):
 return "{0:d}/{1:d}".format(self._n, self._d)

I put the code for GCD outside the class - it's not really associated with
rational numbers, so it should be in a different place.
def greatestDivisor(a, b):
 if(b == 0):
 return a
 return greatestDivisor(b, a % b)

def useRational():
 # a = 1/2
 a = RationalNumber(1,2)
 # b = 1/3
 b = RationalNumber(1,3)
 # c = a + b
 c = a.add(b)
 print(c)
 # Now to demonstrate that rationals are truly precise...
 storage = RationalNumber(0,1)
 floatSum = 0
 for i in range(1000):
 storage = storage.add(RationalNumber(1,1000))
 floatSum += 0.001
 print(floatSum)
 print(storage)
floatZero = floatSum - 1.0
storageZero = storage.subtract(RationalNumber(1,1))
print(floatZero)
print(storageZero)
The floating point version has some noise that has accumulated during
the computation. The rational does not have this noise.

Next: Something practical. You know how you can do
for i in range(10):
right? Well, range is just a class with a few methods defined.
A class is iterable (may be used with a for loop) if it defines the
method __iter__() that returns an object with a method called __next__().
__next__() should return the next value in the sequence or raise
a StopIteration exception.

class NewRange():
 def __init__(self, start, stop):
 print("NewRange.__init__")
 self._start = start
 self._stop = stop
 def __iter__(self):
 print("NewRange.__iter__")
 return RangeIterator(self._start, self._stop)

class RangeIterator():
 def __init__(self, start, stop):
 print("RangeIterator.__init__")
 self._currPos = start
 self._endPos = stop
 def __next__(self):
 print("RangeIterator.__next__", end = " ")
 if self._currPos < self._endPos:
 self._currPos = self._currPos + 1
 print(" -> {0:d}").format(self._currPos-1)
 return self._currPos - 1 #-1 because I already incremented, return
 else:
 print(" -> StopIteration")
 raise StopIteration

If your class contains a method called __next__(), you can have __iter__
just return self:

class SimpleRange:
 def __init__(self, start, stop):
 self._currPos = start
 self._endPos = stop
 def __next__(self):
 if self._currPos < self._endPos:
 self._currPos = self._currPos + 1
 return self._currPos - 1 #-1 because I already incremented, return
 else:
 raise StopIteration
 def __iter__(self):
 return self

When Python comes to a for loop, it first calls __iter__(), then repeatedly
calls __next__() on that iterator until it throws StopIteration.
The advantage is we can just use it like a normal range.
def useNewRange():
 nr = NewRange(0,10)
 for i in nr:
 print(i)
 sr = SimpleRange(0,10)
 for i in sr:
 print(i)
Okay, let's get biochemical again. Consider a class that stores DNA:

```python
class DNAStore:
    """Represents a strand of DNA. Accepts new dna as strings or collections of strings. """
    _bases = """ #Currently empty.

    def __init__(self, bases):
        """bases is a string or a sequence of strings that will be added to this objects' dna store."""
        self.add(bases)
        print("Initialized DNA strand with {0:s}".format(self._bases))

    def add(self, newDNA):
        """Adds new dna to the end of this strand. Rules for dna are the same as for the initializer."""
        if isinstance(newDNA, str):
            for base in newDNA:
                self._addLetter(base)  
        elif isinstance(newDNA, (tuple, list)):
            for thing in newDNA:
                self.add(thing)  #If it's a tuple or list, split it and add each part of it recursively.
        else:
            raise Exception("Invalid DNA.")

    def _addLetter(self, base):
        if base in "AGTC":
            self._bases = self._bases + base
        else:
            raise Exception("Unknown letter for DNA: {0:s}".format(base))

    def getBases(self):
        return self._bases
```

I'd like to extend this class to allow me to iterate over the codons.

```python
class IterableDNA(DNAStore):
    """An iterable version of a DNA store. Iterates by *codon*, not by *base*. """
    _bases = """ #Currently empty.

    def __init__(self, bases):
        """bases is a string or a sequence of strings that will be added to this objects' dna store."""
        self.add(bases)
        print("Initialized DNA strand with {0:s}".format(self._bases))

    def add(self, newDNA):
        """Adds new dna to the end of this strand. Rules for dna are the same as for the initializer."""
        if isinstance(newDNA, str):
            for base in newDNA:
                self._addLetter(base)
        elif isinstance(newDNA, (tuple, list)):
            for thing in newDNA:
                self.add(thing)  #If it's a tuple or list, split it and add each part of it recursively.
        else:
            raise Exception("Invalid DNA.")

    def _addLetter(self, base):
        if base in "AGTC":
            self._bases = self._bases + base
        else:
            raise Exception("Unknown letter for DNA: {0:s}".format(base))
```

#Ekmekci, McAnany, Mura 13 of 19
```python
def getBases(self):
    return self._bases

def __iter__(self):
    # Initialize the iteration.
    self._iterPos = 0
    return self

def __next__(self):
    start = self._iterPos
    self._iterPos = start + 3
    if (len(self._bases) - start < 3):
        raise StopIteration
    codon = self._bases[start:start + 3]
    return codon

def iterateDNA():
    idna = IterableDNA("AGTGACTAGTCACTACTAGCATGAGACATGACGAT")
    for cdn in idna:
        print(cdn)
        # The big point here is that the person using your class needn't
        # think about how the iteration works; it "just works" and is clear
        # and simple.

    # Exercises

    # 1. Add a method to DNAStore that calculates the GC content of its stored
    # dna.

    # 2. Add a method to DNAStore that accepts another DNAStore, and calculates
    # the Hamming distance between itself and the other strand.

    # 3. Explain the behavior of this function:

def rangeMess():
    # 1. If you play with IterableDNA, you'll notice it has the behavior of
    # SimpleRange: You can't nest iteration. Fix it.

class BetterIterableDNA:
    pass

    # 5. Implement a deque class. (See CH12, circles() for a brief discussion of
    # deques.)

class Deque:
    pass

    # 1. I have provided this test method for your use:

def testDeque():
    def checkEqual(a, b):
        if (a != b):
```
```python
raise Exception("unequal: \{0\}, \{1\}".format(a,b))

def checkBroken(op):
    """Tries to run op (which should be a zero-argument function). If op raises
an exception, this catches it and returns gracefully. If op does *not* raise
an exception, this raises its own to indicate that the code did not fail."""
    try:
        op()
    except Exception:
        print("Error occurred as expected.")
    return
raise Exception("Code did not indicate an error.")

d1 = Deque()  # <>
d1.pushLeft(1)  # <1>
d1.pushRight(2)  # <1, 2>
checkEqual(d1.peekLeft(), 1)  # <1, 2>
checkEqual(d1.peekLeft(), 1)  # <1, 2>
d1.popLeft()  # <>
checkEqual(d1.peekLeft(), 2)  # <2>
# Can the class support being emptied?

d1.popRight()  # <>
# Does the class support strange objects being inserted?
d1.pushRight((3,4))  # <3,4>
d1.pushLeft("aoeu")  # "aoeu", (3,4)>
checkEqual(d1.peekRight(), (3,4))  # "aoeu", (3,4)>
d2 = Deque()  # <>
d2.pushLeft(2)  # <>
# Are multiple objects truly independent?
checkEqual(d2.peekRight(), 2)  # <2>
d1.popLeft()  # <>
# Does the class support being emptied?

# Beat up the class a bit...
for i in range(10000):
    d1.pushLeft(i)  # 10000, 9999, ... 1, 0>
for i in range(5000):
    d1.popRight()  # 10000, 9999, ... 5001, 5000>
checkEqual(d1.peekRight(), 5000)

d3 = Deque()
# Does it indicate a problem if I try to remove or read from an empty deque?
checkBroken(lambda:d3.popRight())
checkBroken(lambda:d3.peekLeft())
# Does the deque still work correctly after I try to manipulate it when
# empty?
d3.pushLeft(1)
checkEqual(d3.peekRight(),1)

# 6. Make your deque class iterable. The iteration should start at the left and
# yield all the elements, just like for a list. Iterating should NOT destroy
# the deque being used. That is, after I iterate it, I should be able to push
# and pop and peek just as before and all the values must be the same. As an
# example, the following __next__() would violate this requirement:
# def __next__(self):
#     if(self.isEmpty()):
#         raise StopIteration:
#     if self.popLeft()
#     return self.peekLeft())
# (Assuming, of course, that self refers to the original deque)

# (If you implemented your deque well, this should not be hard!) Note: You may
# assume that the deque is not modified during the iteration, so, for example,
# the behavior of the following code is undefined, and will not be tested:
# for elem in deq:
#     deq.popRight() # Undefined behavior: Deque is modified during iteration.
#     print(elem)
#     elem = elem+1 # Also undefined: I'm trying to modify the elements.
# You can assume that the iterator will not be nested; if it works like
# SimpleRange, that's okay.
```
class IterableDeque(Deque):
 pass

7.
Write a method to stress-test your deque, like the tests above.
def testIterableDeque():
 pass
References

44. Cock P. Using Python (and R) to draw a Heatmap from Microarray Data; 2010. Available from: http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/python/heatmap.

